灌溉诱发湿陷型侧压力对黄土滑坡的影响机制

于国强, 朱立峰, 张霞, 刘港. 2025. 灌溉诱发湿陷型侧压力对黄土滑坡的影响机制. 西北地质, 58(2): 111-120. doi: 10.12401/j.nwg.2024111
引用本文: 于国强, 朱立峰, 张霞, 刘港. 2025. 灌溉诱发湿陷型侧压力对黄土滑坡的影响机制. 西北地质, 58(2): 111-120. doi: 10.12401/j.nwg.2024111
YU Guoqiang, ZHU Lifeng, ZHANG Xia, LIU Gang. 2025. Effect of Collapse-type Lateral Pressure Induced by Irrigation on Loess Landslide. Northwestern Geology, 58(2): 111-120. doi: 10.12401/j.nwg.2024111
Citation: YU Guoqiang, ZHU Lifeng, ZHANG Xia, LIU Gang. 2025. Effect of Collapse-type Lateral Pressure Induced by Irrigation on Loess Landslide. Northwestern Geology, 58(2): 111-120. doi: 10.12401/j.nwg.2024111

灌溉诱发湿陷型侧压力对黄土滑坡的影响机制

  • 基金项目: 国家自然科学基金项目“黄土丘陵植被与淤地坝调控重力侵蚀的协同作用机制”(42177346),“黄土高原粗沙区水 沙产输机理与模拟模型”(U2243240)联合资助。
详细信息
    作者简介: 于国强(1979−),男,博士,正高级工程师,从事土壤侵蚀与水土保持及地质灾害等方面的研究。E−mail:yuguoqiang23@163.com
    通讯作者: 朱立峰(1973−),男,正高级工程师,从事地质灾害等方面的研究。E−mail:sx-zhulf@163.com
  • 中图分类号: P694

Effect of Collapse-type Lateral Pressure Induced by Irrigation on Loess Landslide

More Information
  • 黄土斜坡因湿陷所致侧压力促进坡体失稳滑动,是研究灌溉诱发黄土滑坡的基础科学问题。本研究通过黑方台黄土湿陷试验和坡体稳定性模拟,阐明了灌溉湿陷侧压力在坡体内部空间变异性及其促滑机理。结果表明,该区黄土为自重湿陷性黄土,灌区0~15 m深度黄土为轻度湿陷,20~25 m深度黄土为中度湿陷,非灌区黄土均为强烈湿陷。当坡体含水率由4%增加到20%时,总位移以水平方向为主,水平方向总位移由12 mm增加至140 mm,侧压力系数逐渐增大。饱和状态下,发生湿陷变形时的最大侧压力达123 kPa,湿陷型侧压力系数增加达1.4倍。湿陷导致坡体上部产生拉应力,在滑坡后缘深度在5 m以下的土体产生湿陷裂缝,形成优势通道;坡体内部因压应力集中而产生指向临空面的侧向压力,循着坡肩湿陷裂缝向坡体内部扩张,并沿弧形软弱带发生剪切破坏直至失稳。考虑侧压力对滑坡的促进作用与实际情况更为吻合,完善了灌溉型黄土滑坡的影响因素的表征,有助于完善黄土滑坡诱发灾害理论,为黄土滑坡的精确预警提供参考。

  • 加载中
  • 图 1  研究区典型滑坡及分布

    Figure 1. 

    图 2  取样位置

    Figure 2. 

    图 3  坡体有限元计算模型

    Figure 3. 

    图 4  灌区和非灌区黄土湿陷性差异

    Figure 4. 

    图 5  同一深度处不同含水率下侧压力变化

    Figure 5. 

    图 6  同一初始含水率不同深度处的侧压力变化

    Figure 6. 

    图 7  土压力系数随主应力的变化规律

    Figure 7. 

    图 8  不同含水率下斜坡水平方向位移

    Figure 8. 

    图 9  不同含水率下斜坡总位移

    Figure 9. 

    图 10  不同含水率下斜坡第一主应力分布

    Figure 10. 

    图 11  不同含水率下斜坡第三主应力分布

    Figure 11. 

    图 12  不同含水率下斜坡侧压力系数分布

    Figure 12. 

    图 13  不同工况下斜坡安全系数云图

    Figure 13. 

    图 14  侧压力促滑效应模式图

    Figure 14. 

    表 1  土体材料强度及物理参数

    Table 1.  Material strength and physical parameter

    土层类型 体积模量K(MPa) 剪切模量G(MPa) 粘聚力C(kPa) 内摩擦角φ(°) 密度ρ(kg/m3 液限(%) 塑限(%)
    马兰黄土 417 149 23 21.9 1470 22.90~28.21 11.17~19.94
    离石黄土 588 226 41 27.5 1780 —— ——
    下载: 导出CSV
  • [1]

    李同录, 李颖喆, 赵丹旗, 等. 对水致黄土斜坡破坏模式及稳定性分析原则的思考[J]. 中国地质灾害与防治学报, 2022, 33(2): 25−32.

    LI Tonglu, LI Yingzhe, ZHAO Danqi, et al. Thoughts on modes of loess slope failure triggered by water infiltration and the principals for stability analysis[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):25−32.

    [2]

    孙彬, 谷天峰, 孔嘉旭, 等. 非饱和黄土电阻率和含水率间关系试验研究[J]. 西北地质, 2020, 53(4): 216−222.

    SUN Bin, GU Tianfeng, KONG Jiaxu, et al. Experimental research on relationship between resistivity and moisture content of unsaturated loess[J]. Northwestern Geology,2020,53(4):216−222.

    [3]

    田中英, 张茂省, 冯立, 等. 基于综合物探的黄土滑坡优势通道探测[J]. 西北地质, 2019, 52(2): 172−180.

    TIAN Zhongying, ZHANG Maosheng, FENG Li, et al. Preferential Passage Detection of Loess Landslide Based on Integrated Geophysical Exploration[J]. Northwestern Geology,2019,52(2):172−180.

    [4]

    吴玮江, 宿星, 叶伟林, 等. 饱和黄土滑坡形成中的侧压力作用——以甘肃黑方台为例[J]. 岩土工程学报, 2018, 40(S1): 135−140. doi: 10.11779/CJGE2018S1022

    WU Weijiang, SU Xing, YE Weilin, et al. Lateral pressure in formation of saturated loess landslide——Case study of Heifangtai Gansu Province[J]. Chinese Journal of Geotechnical Engineering,2018,40(S1):135−140. doi: 10.11779/CJGE2018S1022

    [5]

    赵宽耀, 许强, 张先林, 等. 黑方台浅层黄土渗透特性对比试验研究[J]. 工程地质学报, 2018, 26(2): 459−466.

    ZHAO Kuanyao, XU Qiang, ZHANG Xianlin, et al. Infiltration characteristics of topsoil at Heifangtai in Gansu province[J]. Journal of Engineering Geology,2018,26(2):459−466.

    [6]

    赵志强, 戴福初, 闵弘, 等. 原状黄土−古土壤中水分入渗过程研究[J]. 岩土力学, 2021, 42(9): 2611−2621.

    ZHAO Zhiqiang, DAI Fuchu, MIN Hong, et al. Research on infiltration process in undisturbed loess-paleosol sequence[J]. Rock and Soil Mechanics,2021,42(9):2611−2621.

    [7]

    张炜. 黄土力学性质试验中的若干问题[J]. 工程勘察, 1995, 3: 6−12.

    ZHANG Wei. Some problems in the mechanical properties test of loess[J]. Geotechnical Investigation & Surveying,1995,3:6−12.

    [8]

    周飞, 许强, 亓星, 等. 灌溉诱发突发性黄土滑坡机理研究[J]. 山地学报, 2020, 38(1): 73−82.

    ZHOU Fei, XU Qiang, QI Xing, et al. The mechanism study of the irrigation-induced sudden loess landslides[J]. Mountain Research,2020,38(1):73−82.

    [9]

    朱立峰. 黑方台滑坡群控制因素与外动力条件分析[J]. 西北地质, 2019, 52(3): 217−222.

    ZHU Lifeng. Analysis of control factors and external force for the landslides in heifangtai area[J]. Northwestern Geology,2019,52(3):217−222.

    [10]

    Gu T, Wang J, Lin H, et al. The Spatiotemporal Relationship between Landslides and Mechanisms at the Heifangtai Terrace, Northwest China[J]. Water,2021,13(22):3275.

    [11]

    Gu T, Zhang M, Wang J, et al. The effect of irrigation on slope stability in the Heifangtai Platform, Gansu Province, China[J]. Engineering Geology,2019,248:346−356.

    [12]

    Hinds E, Lu N, Mirus B, et al. Effects of infiltration characteristics on spatial-temporal evolution of stability of an interstate highway embankment[J]. Journal of Geotechnical and Geoenvironmental Engineering,2019,145(9):05019008.

    [13]

    Juang C H, Dijkstra T, Wasowski J, et al. Loess geohazards research in China: advances and challenges for mega engineering projects[J]. Engineering geology,2019,251:1−10.

    [14]

    Lu N, Sener K B, Wayllace A, et al. Analysis of rainfall-induced slope instability using a field of local factor of safety[J]. Water Resources Research,2012,48(9):W09524.

    [15]

    Peng D, Xu Q, Liu F, et al. Distribution and failure modes of the landslides in Heitai terrace, China[J]. Engineering Geology,2018,236:97−110.

    [16]

    Shahrokhabadi S, Vahedifard F, Ghazanfari E, et al. Earth pressure profiles in unsaturated soils under transient flow[J]. Engineering Geology,2019,260:105218.

    [17]

    Shao W, Yang Z, Ni J, et al. Comparison of single-and dual-permeability models in simulating the unsaturated hydro-mechanical behavior in a rainfall-triggered landslide[J]. Landslides,2018,15(12):2449−2464.

    [18]

    Thomas M A, Mirus B B, Collins B D, et al. Variability in soil-water retention properties and implications for physics-based simulation of landslide early warning criteria[J]. Landslides,2018,15(7):1265−1277.

    [19]

    Wang L Q, Shao S J, She F T. A new method for evaluating loess collapsibility and its application[J]. Engineering Geology,2020,264:105376.

    [20]

    Wayllace A, Lu N, Thunder B. Hydrological Behavior of an Infiltration Induced Landslide in Colorado, USA[C]//Geo-Congress 2019: Embankments, Dams, and Slopes. Reston, VA: American Society of Civil Engineers, 2019, 213−222.

    [21]

    Xu L, Dai F, Gong Q, et al. Irrigation-induced loess flow failure in Heifangtai Platform, North-West China[J]. Environmental Earth Sciences,2011,66:1707−1713.

    [22]

    Xu L, Yan D. The groundwater responses to loess flowslides in the Heifangtai platform[J]. Bulletin of Engineering Geology and the Environment,2019,78(7):4931−4944.

    [23]

    Xu Q, Zhao K, Liu F, et al. Effects of land use on groundwater recharge of a loess terrace under long-term irrigation[J]. Science of the Total Environment,2021,751:142340.

    [24]

    Yang H, Xie W L, Liu Q Q, et al. Three-stage collapsibility evolution of Malan loess in the Loess Plateau[J]. Catena,2022,217:106482.

    [25]

    Yang K H, Nguyen T S, Rahardjo H,et al. Deformation characteristics of unstable shallow slopes triggered by rainfall infiltration[J]. Bulletin of Engineering Geology and the Environment,2021,80:317−344.

    [26]

    Yao Y G, Zhang Y C, Gao X L, et al. Study on permeability and collapsibility characteristics of sandy loess in northern Loess Plateau, China[J]. Journal of Hydrology,2021,603:126883.

    [27]

    Zhang F Y, Wang G H, Peng J B. Initiation and mobility of recurring loess flowslides on the Heifangtai irrigated terrace in China: Insights from hydrogeological conditions and liquefaction criteria[J]. Engineering Geology,2022,302:106619.

  • 加载中

(14)

(1)

计量
  • 文章访问数:  52
  • PDF下载数:  9
  • 施引文献:  0
出版历程
收稿日期:  2024-06-03
修回日期:  2024-11-22
录用日期:  2024-11-26
刊出日期:  2025-04-20

目录