A Review of Geological Characteristics and Time-Space Distribution of Rare Metal Deposits in the Central Asian Orogenic Belt, Xinjiang
-
摘要:
在总结前人研究和野外调查基础上,笔者综述了新疆中亚造山带稀有金属矿地质特征和时空分布规律。稀有金属矿主要为花岗伟晶岩型,其次是花岗岩型,少量碱性花岗岩型、碱性正长岩型、火山热液型、碱性伟晶岩型和矽卡岩型,主要分布于阿尔泰,其次是西南天山和东天山。稀有金属成矿年龄变化于151~476 Ma,主要集中在180~290 Ma(早侏罗世—二叠纪),不同地区成矿时间存在差异。二叠纪为后碰撞环境,三叠纪—侏罗纪为板内环境,区域大规模伸展是形成大规模稀有金属矿的地球动力学背景。东天山和西南天山稀有金属成矿与岩浆侵入作用有关,但阿尔泰除阿斯喀尔特、大喀拉苏等少数矿床外,多数稀有金属矿与赋矿花岗岩不存在直接的成因联系。
Abstract:This paper reviews the geological characteristics, spatial and temporal-distribution, and tectonic settings of rare metal deposits in the Xinjiang Central Asian Orogenic Belt. The rare metal deposits are predominantly of granitic pegmatite type, followed by granite type, with a small amount of alkaline granite type, alkaline syenite type, alkaline pegmatite type, volcanic hydrothermal type, and skarn type. They are mainly distributed in the Altay, followed by the East Tianshan and Southwest Tianshan. The rare metal mineralization took place during 467 to 151 Ma and the majority of the deposits are formed in the 290 to 180 Ma (Permian to Early Jurassic). In addition, there are differences in the rare metal mineralization time between different regions. The Permian and Triassic to Jurassic mineralization occurred in post-collision and continental environments, respectively, and the regional large-scale extension background is favorable for the large-scale rare metal mineralization. The rare metal deposits in East Tianshan and Southwest Tianshan are closely related to magmatic intrusion. However, most of the rare metal deposits in the Altay (except for Arskartor and Dakalasu, etc) are no genetic relationship with their ore-hosting granites.
-
-
图 1 新疆中亚造山带地质简图(图A据Chen et al., 2002;图B据董连慧等,2013修改)
Figure 1.
图 2 新疆阿尔泰地质、伟晶岩和主要稀有金属矿分布简图(据邹天人等, 2006;Yang et al., 2013;杨富全等,2018修改)
Figure 2.
图 3 东天山地质及主要稀有金属矿分布略图(底图据王京彬等,2006)
Figure 3.
图 4 卡鲁安–库卡拉盖矿区地质略图(据申茂德等,2016)
Figure 4.
图 6 波孜果尔Nb‒Ta矿区地质略图(据刘春花,2011)
Figure 6.
图 7 镜儿泉锂铍铌钽矿地质简图及勘探线剖面图(据Liu et al., 2020;三金柱等,2020修改)
Figure 7.
图 8 东天山张宝山铷矿地质简图及勘探线剖面图(据甘肃省地质调查院,2016;蕫连慧,2018;刘延兵等,2023)
Figure 8.
图 10 新疆阿尔泰不同时代稀有金属矿形成的构造背景(A、B和C据牛贺才等,2006;Yang et al., 2018;D据张辉等,2019修改)
Figure 10.
表 1 新疆中亚造山带稀有金属矿成矿年龄
Table 1. Summary of geochronological data for rare meta deposits in the Central Asian Orogenic Belt, Xinjiang
序号 矿床 测试对象 测试方法 年龄(Ma) 参考文献 阿尔泰 1 也留曼REE‒Nb矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 476 ± 12 任宝琴等,2011 2 那森恰含稀有金属工业白云母矿 白云母 Ar‒Ar年龄 447.6 ± 3.2 王登红等,2002 3 拜城工业白云母Li‒Be‒Nb‒Ta矿 白云母 Ar‒Ar坪年龄 436 ± 0.5 王登红等,2002 伟晶岩(No.40) 锆石LA‒ICP‒MS U‒Pb 275.5 ± 4.2 任宝琴等,2011 伟晶岩(No.40) 锆石LA‒ICP‒MS U‒Pb 274.0 ± 5.3 Lü et al., 2021 4 青河塔拉特Li‒Be‒Nb‒Ta矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 385.9 ± 3.5 Lü et al., 2018 白云母 Ar‒Ar 坪年龄 286.4 ± 1.6 Zhou et al., 2016 5 乔拉克赛工业白云母矿,
伴有Nb‒Ta‒Be矿化白云母 Ar‒Ar等时线年龄 370.3 王登红等,2002 6 库威工业白云母‒REE‒Nb‒Ta‒Be矿 白云母 Ar‒Ar坪年龄 369.8 ± 0.4 王登红等,2002 伟晶岩 锆石U‒Pb 200.2 ± 1.9 张辉等,2019 伟晶岩(No. 554) 锆石U‒Pb 197.3 ± 1.3 张辉等,2019 伟晶岩 锆石U‒Pb 194.2 ± 1.8 张辉等,2019 伟晶岩 锆石U‒Pb 192.9 ± 1.5 张辉等,2019 7 阿木拉宫Li‒Be‒Nb‒Ta矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 358.3 ± 4.6 Lü et al., 2018 8 铁木勒特Be矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 333.0 ± 3 Lü et al., 2018 9 将军山Rb‒Nb‒Ta矿 钾长花岗岩 锆石LA‒ICP‒MS U‒Pb 283.0 ± 2 杨富全未刊资料 10 阿木斯台Be‒Nb‒Ta矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 275.5 ± 4.2 Lü et al., 2012 11 加曼哈巴Be‒Nb‒Ta矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 269.4 ± 1.6 任宝琴等,2011 伟晶岩 锆石LA‒ICP‒MS U‒Pb 237.5 ± 2.6 任宝琴等,2011 伟晶岩 锆石LA‒ICP‒MS U‒Pb 260.4 ± 4.0 Lü et al., 2021 12 也留曼Be矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 263.8 ± 1.6 任宝琴等,2011 伟晶岩 锆石LA‒ICP‒MS U‒Pb 262.9 ± 3.8 Lü et al., 2021 13 塔尔浪Be矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 255.5 ± 2.7 Lü et al., 2021 14 萨尔加克Li‒Be‒Nb‒Ta矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 252.7 ± 3.1 Lü et al., 2021 15 阿克巴斯塔乌Be‒Nb‒Ta矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 253.0 ± 3.0 Lü et al., 2021 16 切木尔切克Be‒Nb‒Ta矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 253.5 ± 3.2 Lü et al., 2021 17 阿巴宫‒塔拉特Be‒Nb‒Ta矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 246.8 ± 1.2 Lü et al., 2012 18 大喀拉苏Be‒Nb‒Ta矿 伟晶岩中白云母 Ar‒Ar坪年龄 248.4 ± 2.1 王登红等,2002 伟晶岩 锆石LA‒ICP‒MS U‒Pb 258.0 ± 3.8 Lü et al., 2021 伟晶岩 锆石LA‒ICP‒MS U‒Pb 231.8 ± 4.7 秦克章等,2013 伟晶岩 铌钽铁矿LA‒ICP‒MS U‒Pb 229.9 ± 1.4 Feng et al., 2020 伟晶岩 铌钽铁矿LA‒ICP‒MS U‒Pb 228.2 ± 0.4 Feng et al., 2020 伟晶岩 铌钽矿LA‒ICP‒MS U‒Pb 239.6±3.8 Zhou et al., 2016 19 阿克巴斯塔乌Be矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 249.7 ± 0.7 任宝琴等,2011 20 切别林Be矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 240.5 ± 1.4 任宝琴等,2011 21 苇子峡Be矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 248.2 ± 2.2 秦克章等, 2013 伟晶岩中白云母 Ar‒Ar坪年龄 237.4 ± 1.2 Zhou et al., 2016 22 冲乎尔Be矿 伟晶岩 锆石U‒Pb 234.2 ± 2.4 张辉等,2019 23 小喀拉苏Li‒Be‒Nb‒Ta矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 296.3 ± 9.0 秦克章等, 2013 伟晶岩(No. 208) 锆石U‒Pb 241.5±3.1 张辉等,2019 伟晶岩 铌钽矿LA‒ICP‒MS U‒Pb 258.1±3.1 Zhou et al., 2016 伟晶岩 铌钽矿LA‒ICP‒MS U‒Pb 262.3±2.5 Zhou et al., 2016 伟晶岩中白云母 Ar‒Ar坪年龄 233.8 ± 0.4 王登红等,2003 白云母 Ar‒Ar 坪年龄 237.7 ± 1.3 Zhou et al., 2016 24 磨什尕Li‒Nb‒Ta矿 伟晶岩 锆石U‒Pb 249.2±2.9 张辉等,2019 25 大萨孜Be矿 伟晶岩 锆石U‒Pb 239.0 ± 2.6 张辉等,2019 26 阿斯喀尔特Be‒Nb‒Mo矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 220.6 ± 1.6 刘文政等,2015 伟晶岩 锆石LA‒ICP‒MS U‒Pb 218.2 ± 3.9 王春龙等,2015 似伟晶岩中辉钼矿 Re‒Os 加权平均年龄 218.6 ± 1.3 王春龙等,2015 似伟晶岩中辉钼矿 Re‒Os 等时线年龄 228.7 ± 7.1 刘文政等,2015 白云母钠长石花岗岩中辉钼矿 Re‒Os 加权平均年龄 214.9 ± 1.2 丁欣等,2016 27 可可托海稀有金属矿 伟晶岩I带 锆石 SHRIMP U‒Pb 220 ± 9 Wang et al., 2007 伟晶岩V带 锆石 SHRIMP U‒Pb 198 ± 7 Wang et al., 2007 伟晶岩VII带 锆石 SHRIMP U‒Pb 213 ± 6 Wang et al., 2007 伟晶岩II带 锆石LA‒ICP‒MS U‒Pb 186.5 ± 2.0 Zhou et al., 2015 伟晶岩V带 锆石LA‒ICP‒MS U‒Pb 210.7 ± 6.3 Zhou et al., 2015 伟晶岩VI带 锆石LA‒ICP‒MS U‒Pb 187.4 ± 2.7 Zhou et al., 2015 伟晶岩VII带 锆石LA‒ICP‒MS U‒Pb 193.3 ± 6.4 Zhou et al., 2015 伟晶岩VIII带 锆石LA‒ICP‒MS U‒Pb 198.5 ± 4.2 Zhou et al., 2015 伟晶岩II带 锆石LA‒ICP‒MS U‒Pb 211.9 ± 3.2 陈剑锋,2011 伟晶岩IV带 锆石LA‒ICP‒MS U‒Pb 214.9 ± 2.1 陈剑锋,2011 伟晶岩V带 锆石LA‒ICP‒MS U‒Pb 212.0 ± 4.1 陈剑锋,2011 缓倾斜部分伟晶岩带 锆石LA‒ICP‒MS U‒Pb 212.0 ± 1.8 陈剑锋,2011 伟晶岩 铌钽矿LA‒ICP‒MS U‒Pb 218 ± 2 Che et al., 2015 伟晶岩I带中辉钼矿 Re‒Os等时线年龄 208.8 ± 2.4 Liu et al., 2014 伟晶岩II带中白云母 Ar‒Ar坪年龄 179.7 ± 1.1 Zhou et al., 2015 伟晶岩IV带中白云母 Ar‒Ar坪年龄 182.1 ± 1.0 Zhou et al., 2015 伟晶岩VI带中白云母 Ar‒Ar坪年龄 181.8 ± 1.1 Zhou et al., 2015 28 虎斯特Be‒Nb‒Ta矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 244.3 ± 1.1 任宝琴等,2011 伟晶岩 锆石LA‒ICP‒MS U‒Pb 195.9 ± 2.4 秦克章等,2013 伟晶岩 锆石LA‒ICP‒MS U‒Pb 198.5±2.5 Zhou et al., 2016 白云母 Ar‒Ar 坪年龄 178.8 ± 1.0 Zhou et al., 2016 29 尚克兰Be 伟晶岩 锆石U‒Pb 约208 张辉等,2019 30 群库尔Be‒Nb‒Ta矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 207.2 ± 1.6 Lü et al., 2012 伟晶岩 锆石LA‒ICP‒MS U‒Pb 206.8 ± 1.6 任宝琴等,2011 伟晶岩 锆石LA‒ICP‒MS U‒Pb 194.3 ± 1.6 秦克章等,2013 白云母 Ar‒Ar 坪年龄 162.2 ± 0.9 Zhou et al., 2016 31 佳木开Be‒Nb‒Ta矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 212.2 ± 1.7 任宝琴等,2011 伟晶岩 锆石LA‒ICP‒MS U‒Pb 199.1 ± 1.0 任宝琴等,2011 伟晶岩 锆石LA‒ICP‒MS U‒Pb 192.0 ±2.3 Zhang et al., 2016 32 库卡拉盖(650号)Li‒Be矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 207.9 ± 5.1 秦克章等,2013 伟晶岩 锆石LA‒ICP‒MS U‒Pb 227.9 ± 2.6 张辉等,2014 伟晶岩 锆石LA‒ICP‒MS U‒Pb 211.3 ± 2.4 张辉等,2014 33 柯鲁木特Li‒Be‒Nb‒Ta矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 202.9 ± 0.8 任宝琴等,2011 伟晶岩 锆石LA‒ICP‒MS U‒Pb 191.8 ± 1.4 秦克章等,2013 伟晶岩 锆石LA‒ICP‒MS U‒Pb 238.3 ± 2.0 Lü et al., 2012 伟晶岩 锆石LA‒ICP‒MS U‒Pb 233.5 ± 3.7 Lü et al., 2012 伟晶岩 锆石LA‒ICP‒MS U‒Pb 188.3 ± 1.7 Lü et al., 2012 伟晶岩 锆石LA‒ICP‒MS U‒Pb 218.8 ± 1.9 Lü et al., 2012 伟晶岩 锆石LA‒ICP‒MS U‒Pb 210.7 ± 1.6 Lü et al., 2012 34 卡鲁安Li矿 805脉伟晶岩 锆石LA‒ICP‒MS U‒Pb 216.0 ± 2.6 马占龙等,2015 806脉伟晶岩 锆石LA‒ICP‒MS U‒Pb 223.7 ± 1.8 马占龙等,2015 807脉伟晶岩 锆石LA‒ICP‒MS U‒Pb 221 ± 15 马占龙等,2015 伟晶岩 锆石LA‒ICP‒MS U‒Pb 224.6 ± 2.3 Zhang et al., 2016 伟晶岩 锆石LA‒ICP‒MS U‒Pb 191.6 ± 2.0 Zhang et al., 2016 34 卡鲁安Li矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 192.6 ± 2.3 Zhang et al., 2016 803脉伟晶岩 铌钽铁矿LA‒ICP‒MS U‒Pb 209.5 ± 1.4 Feng et al., 2019 802脉伟晶岩 铌钽铁矿LA‒ICP‒MS U‒Pb 198.3 ± 2.0 Feng et al., 2019 805脉伟晶岩 铌钽铁矿LA‒ICP‒MS U‒Pb 224.3 ± 2.9 Feng et al., 2019 35 沙依肯布拉克Be矿 伟晶岩似文象结构带 锆石LA‒ICP‒MS U‒Pb 201.9 ± 2.3 杨富全等,2018 伟晶岩中块体微斜长石带 锆石LA‒ICP‒MS U‒Pb 202.2 ± 3.4 杨富全等,2018 36 阿祖拜Be矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 191.6 ± 2.1 Zhang et al., 2016 伟晶岩 锆石U‒Pb 215.6 ± 0.9 周天怡,2015 伟晶岩 锆石U‒Pb 201.0 ± 1.3 周天怡,2015 白云母 Ar‒Ar坪年龄 154.1 ± 0.1 王登红等,2000 37 小虎斯特Li‒Be‒Nb‒Ta矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 190.6 ± 1.2 任宝琴等,2011 38 阿拉散Be矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 185 ± 2.7 杨富全等,2018 39 库儒尔特Li‒Be‒Nb‒Ta矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 180.7 ± 0.5 任宝琴等,2011 40 别也萨麻斯Li‒Be‒Nb‒Ta矿 伟晶岩 锆石LA‒ICP‒MS U‒Pb 151 ± 1.8 丁建刚等,2020 伟晶岩 锆石LA‒ICP‒MS U‒Pb 157.2 ± 0.5 吕正航等,2015 东天山 41 镜儿泉Li‒Be‒Nb‒Ta矿 I号伟晶岩 锆石LA‒ICP‒MS U‒Pb 218.0 ± 1.8 李寄邦等,2020 I号伟晶岩 铌钽铁矿LA‒ICP‒MS U‒Pb 250.8 ± 1.0 凤永刚等,2021 II号伟晶岩 白云母Ar‒Ar 243.0 ± 2.0 陈郑辉等,2006 42 国宝山Rb矿(甘肃) 天河石花岗岩 锆石 LA‒ICP‒MS U‒Pb 247 ± 3.0 贺昕宇,2019 含天河石花岗岩 锆石 LA‒ICP‒MS U‒Pb 246.8 ± 3.0 Chen et al., 2022 含天河石花岗岩 独居石LA‒ICP‒MS U‒Pb 245.0 ± 1.2 Chen et al., 2022 天河石花岗岩 独居石LA‒ICP‒MS U‒Pb 243.4 ± 2.0 Chen et al., 2022 含天河石花岗岩 锡石LA‒ICP‒MS U‒Pb 241.8 ± 3.1 Chen et al., 2022 天河石花岗岩 锡石LA‒ICP‒MS U‒Pb 242.2 ± 0.9 Chen et al., 2022 含天河石花岗岩 铌钽矿LA‒ICP‒MS U‒Pb 239.8 ± 5.5 Chen et al., 2022 天河石花岗岩 铌钽矿LA‒ICP‒MS U‒Pb 243.5 ± 2.3 Chen et al., 2022 天河石伟晶岩 铌钽矿LA‒ICP‒MS U‒Pb 243.6 ± 1.9 Chen et al., 2022 天河石伟晶岩 独居石LA‒ICP‒MS U‒Pb 247.1 ± 2.4 Chen et al., 2022 43 张宝山(白石头泉)Rb矿 天河石花岗岩 白云母Ar‒Ar 241.5 ± 2.7 吴昌志等,2021 黄玉钠长花岗岩 铌钽矿LA‒ICP‒MS U‒Pb 251.0 ± 1.1 吴昌志等,2021 含天河石花岗岩 锆石LA‒ICP‒MS U‒Pb 248.0 ± 3.1 Zhi et al., 2021 含黄玉天河石花岗岩 锆石LA‒ICP‒MS U‒Pb 238 ± 5.9 Zhi et al., 2021 44 沙东W‒Rb矿 花岗岩 锆石LA‒ICP‒MS U‒Pb 239 ± 2.0 Chen et al., 2018 西南天山 45 波孜果尔Nb‒Ta矿 矿化霓石花岗岩 锆石LA‒ICP‒MS U‒Pb 275.1 ± 1.3 徐海明等,2012 矿化霓石花岗岩 锆石LA‒ICP‒MS U‒Pb 275 ± 1.4 徐海明等,2012 霓石钠闪碱长花岗岩 锆石LA‒ICP‒MS U‒Pb 290.6 ± 2. 8 刘春花等,2014 霓石钠闪碱长花岗岩 锆石LA‒ICP‒MS U‒Pb 289.4 ± 3.8 刘春花等,2014 霓石钠闪石英碱长正长岩 锆石LA‒ICP‒MS U‒Pb 291.6 ± 2.9 刘春花等,2014 黑云母碱长正长岩 锆石LA‒ICP‒MS U‒Pb 287.7 ± 2.9 刘春花等,2014 46 克其克果勒Nb‒Ta矿 矿化霓霞正长岩 锆石U‒Pb 279 徐海明等,2012 47 巴什苏洪铌钽矿 碱长花岗岩 锆石SHRIMP U‒Pb 277.0 ± 2.1 邹思远,2016 西准噶尔 48 白杨河Be‒U‒Mo矿 铍铀矿化萤石脉 白云母Ar‒Ar 303 ± 1.6 Li et al., 2015 -
[1] 柴凤梅, 毛景文, 董连慧, 等 . 阿尔泰南缘克朗盆地康布铁堡组变质火山岩年龄及岩石成因[J]. 岩石学报,2009 ,25 (6 ):1403 −1415 .CHAI Fengmei, MAO Jingwen, DONG Lianhui, et al . Geochronology and genesis ofthe metarhyolities in the Kangbutiebao Formation from the Lelang basin at the southern margin of the Altay, Xinjiang[J]. Acta Petrologica Sinica,2009 ,25 (6 ):1403 −1415 .[2] 陈剑锋. 阿尔泰3号脉缓倾斜部分的形成和演化[D]. 贵阳: 中国科学院地球化学研究所, 2011, 1–86. CHEN Jianfeng. Geochemistry of the plate part in Altai No. 3 pegmatite and its formation and evolution (Mater dissertation research paper) [D]. Guiyang: Institute of Geochemistry,Chinese Academy of Sciences, 2011, 1–86. [3] 陈衍景, 韩金生 . 新疆阿尔泰造山带伟晶岩型稀有金属矿床成矿作用[J]. 地质学报,2024 ,98 (5 ):1452 −1472 .CHEN Yanjing, HAN Jinsheng . Pegmatite-type mineralization of rare metals in the Altai orogenic belt, Xinjiang[J]. Acta Geologica Sinica,2024 ,98 (5 ):1452 −1472 .[4] 陈郑辉, 王登红, 龚羽飞, 等 . 新疆哈密镜儿泉伟晶岩型稀有金属矿床40Ar-39Ar年龄及其地质意义[J]. 矿床地质,2006 ,25 (4 ):470 −476 .CHEN Zhenghui, WANG Denghong, GONG Yufei, et al . 40Ar-39Ar isotope dating of muscovite from Jing’erquan pegmatite rare metal deposit in Hami, Xinjiang, and its Geological significance[J]. Mineral Deposits,2006 ,25 (4 ):470 −476 .[5] 丁建刚, 杨成栋, 杨富全, 等 . 新疆阿尔泰别也萨麻斯稀有金属矿床含矿伟晶岩与花岗岩围岩成因关系[J]. 地球科学与环境学报,2020 ,42 (1 ):71 −85 .DING Jiangang, YANG Chengdong, YANG Fuquan, et al . Genetic relationship between ore-bearing pegmatite and the surrounding granite of Bieyesamasi rare metal depositin Altay of Xinjiang, China[J]. Journal of Earth Sciences and Environment,2020 ,42 (1 ):71 −85 .[6] 丁欣, 李建康, 丁建刚, 等 . 新疆阿斯喀尔特Be-Nb-Mo矿床Re-Os同位素年龄及地质意义[J]. 桂林理工大学学报,2016 ,36 (1 ):60 −65 .DING Xin, LI Jiankang, DING Jiangang, et al . Molybdenite Re-Os isochron age and geological implication in Asikaerte Be-Nb-Mo deposit of Xinjiang[J]. Journal of Guilin University of Technology,2016 ,36 (1 ):60 −65 .[7] 蕫连慧, 周汝洪, 赵同阳, 等. 新疆侵入岩[M]. 北京: 地质出版社, 2018, 1–332. [8] 蕫连慧. 新疆矿产资源[R]. 2018. [9] 董连慧, 冯京, 刘德权, 等. 新疆铁矿床成矿规律及成矿预测评价[M]. 北京: 地质出版社, 2013. [10] 凤永刚, 梁婷, 雷如雄, 等 . 稀有金属伟晶岩过度冷却与侵位之关系—基于野外地质观察及年代学的思考[J]. 地球科学与环境学报,2021 ,43 (1 ):100 −116 .FENG Yonggang, LIANG Ting, LEI Ruxiong, et al . Relationship between undercooling and emplacement of rare-element pegmatites—thinking based on field observations and pegmatite geochronology[J]. Journal of Earth Sciences and Environment,2021 ,43 (1 ):100 −116 .[11] 甘肃省地质调查院. 新疆哈密市张宝山铷多金属矿普查报告[R]. 2016. [12] doi: 10.18654/1000-0569/2023.07.03高景刚, 梁婷, 凤永刚, 等 . 阿尔泰哈龙稀有金属矿集区复式岩体与伟晶岩成因关系探讨[J]. 岩石学报,2023 ,39 (7 ):1908 −1930 . doi: 10.18654/1000-0569/2023.07.03GAO Jinggang, LINAG Ting, FENG Yonggang, et al . Genetic relationship between the complex massif and pegmatites in Halong rare metal ore concentrated area, Altay[J]. Acta Petrologica Sinica,2023 ,39 (7 ):1908 −1930 .[13] 顾连兴, 吴昌志, 张遵忠, 等 . 东疆白石头泉含黄玉天河石花岗岩体的地球化学: 分带和岩浆演化[J]. 高校地质学报,2007 ,13 (2 ):207 −223 .GU Lianxing, WU Changzhi, ZHANG Zunzhong, et al . Geochemistry of the Baishitouquan topaz bearing amazonite granite: Zoning and magma evolution[J]. Geological Journal of China Universities,2007 ,13 (2 ):207 −223 .[14] 郭旭吉, 马占龙 . 新疆福海县哈龙稀有金属矿床地质特征及成因浅析[J]. 西北地质,2015 ,48 (3 ):355 −361 .GUO Xuji, MA Zhanlong . Geological characteristics and genesis of Halong rare metal deposit in Fuhai County, Xinjiang[J]. Northwestern Geology,2015 ,48 (3 ):355 −361 .[15] 郭正林, 申茂德, 郭旭吉, 等 . 阿尔泰地区花岗伟晶岩稀有金属成矿机理及找矿标志浅析[J]. 新疆地质,2013 ,31 (S1 ):77 −83 .GUO Zhenglin, SHEN Maode, GUO Xuji, et al . Analysis of prospecting and metallogenisis of rare metal in granitic pegmatite from Altai[J]. Xinjiang Geology,2013 ,31 (S1 ):77 −83 .[16] 韩宝福 . 中俄阿尔泰山中生代花岗岩与稀有金属矿床的初步对比分析[J]. 岩石学报,2008 ,24 (4 ):655 −660 .HAN Baofu . A Preliminary comparison of Mesozoic granitiods and rare metal deposits in Chinese and Russian Altai Mountains[J]. Acta Petrologica Sinica,2008 ,24 (4 ):655 −660 .[17] 何国琦, 成守德, 徐新, 等. 中国新疆及邻区大地构造图(1∶ 2500000 )说明书[M]. 北京: 地质出版社, 2004, 1–65.[18] 贺昕宇 . 中天山东段国宝山三叠纪高铷天河石花岗岩年代学及岩石地球化学研究[J]. 矿产勘查,2019 ,10 (12 ):2899 −2905 .HE Xinyu . Geochronology and geochemistry of Triassic high Rb amazonite granite from Guobaoshan in eastern segment of the middle Tianshan[J]. Mineral Exploration,2019 ,10 (12 ):2899 −2905 .[19] 李通国, 梁明宏, 余君鹏, 等. 甘肃省稀有(稀土)金属成矿地质背景研究[M]. 北京: 地质出版社, 2018, 1–158. [20] 李寄邦, 张辉, 吕正航 . 东天山镜儿泉伟晶岩与花岗岩成因关系: 来自锆石U-Pb 定年和Hf 同位素证据[J]. 地球化学,2020 ,49 (4 ):385 −403 .LI Jibang, ZHANG Hui, LÜ Zhenghang . Genetic linkage between pegmatites and granites from Jingerquan, East Tianshan Mountains: Evidence from zircon U-Pb geochronological and Hf isotopic data[J]. Geochimica,2020 ,49 (4 ):385 −403 .[21] 李强, 杨富全, 杨成栋 . 新疆阿尔泰大喀拉苏花岗岩年代学、地球化学特征及其构造意义[J]. 地球科学与环境学报,2019 ,41 (4 ):396 −413 .LI Qiang, YANG Fuquan, YANG Chengdong . Geochronology and geochemical characteristics of Dakalasu granite in Altay of Xinjiang, China and their tectonic significance[J]. Journal of Earth Sciences and Environment,2019 ,41 (4 ):396 −413 .[22] 刘文政, 张辉, 唐红峰, 等 . 新疆阿斯喀尔特铍钼矿床中辉钼矿Re-Os 定年及成因意义[J]. 地球化学,2015 ,44 (2 ):145 −154 .LIU Wenzheng, ZHANG Hui, TANG Hongfeng, et al . Molybdenite Re-Os dating of the Asikaerte Be-Mo deposit in Xinjiang, China and its genetic implications[J]. Geochimica,2015 ,44 (2 ):145 −154 .[23] 刘春花, 吴才来, 郜源红, 等 . 南天山拜城县波孜果尔A型花岗岩类锆石U-Pb定年及其Lu-Hf同位素组成[J]. 岩石学报,2014 ,30 (6 ):1595 −1614 .LIU Chunhua, WU Cailai, GAO Yuanhong, et al . Zircon LA-ICP-MS U-Pb dating and Lu-Hf isotopic system of A-type granitoids in South Tianshan, Baicheng County, Xinjiang[J]. Acta Petrologica Sinica,2014 ,30 (6 ):1595 −1614 .[24] 刘春花. 新疆拜城县波孜果尔A型花岗岩类岩石地球化学特征[D]. 北京: 中国地质大学(北京), 2011. LIU Chunhua. Geochemical Characteristics of A-type Granitoids in Boziguo'er, Baicheng County, Xinjiang[D]. Beijign: China University of Geosciences (Beijing), 2011. [25] 刘国仁, 黄诚, 张新泰, 等. 新疆阿勒泰地区矿产资源规划研究(2016~2020 年)[R]. 2017. [26] 刘源, 杨家喜, 胡健民, 等 . 阿尔泰构造带喀纳斯群时代的厘定及其意义[J]. 岩石学报,2013 ,29 (3 ):887 −898 .LIU Yuan, YANG Jiaxi, HU Jianmin, et al . Restricting the deposition age of the Kanas Group of Altai tectonic belt and its implications[J]. Acta Petrologica Sinica,2013 ,29 (3 ):887 −898 .[27] 刘延兵, 文美兰, 吴彦彬, 等. 新疆哈密新发现的铷矿床成因: 来自矿床地质和地球化学的证据[J]. 地质通报, 2023, 42(1): 41–54. LIU Yanbing, WEN Meilan, WU Yanbin, et al. Genesis of the newly discovered rubidium deposit in Hami, Xinjiang: evidence from deposit geology and geochemistry[J]. Geological Bulletin of China, 2023, 42(1): 41–54. [28] 吕正航, 张辉, 唐勇 . 新疆别也萨麻斯L1号伟晶岩脉Li-Nb-Ta矿床与围岩花岗岩成因关系研究[J]. 矿物学报,2015 ,35 (S1 ):323 .LÜ Zhenghang, ZHANG Hui, TANG Yong . The study of genetic relationship between Bieyesamasi No. L1 pegmatite Li-Nb-Ta ore deposits and wall rock granites, Xinjiang[J]. Acta Mineralogica Sinica,2015 ,35 (S1 ):323 .[29] 马占龙, 张辉, 唐勇, 等 . 新疆卡鲁安矿区伟晶岩锆石U-Pb定年、铪同位素组成及其与哈龙花岗岩成因关系研究[J]. 地球化学,2015 ,44 (1 ):9 −26 .MA Zanlong, ZHANG Hui, TANG Yong, et al . Zircon U-Pb geochronology and Hf isotopes of pegmatites from the Kaluan mining area in the Altay, Xinjiang and their genetic relationship with the Halong granite[J]. Geochimica,2015 ,44 (1 ):9 −26 .[30] 牛贺才, 于学元, 许继峰, 等. 中国新疆阿尔泰晚古生代火山作用及成矿[M]. 北京: 地质出版社, 2006, 1–184. [31] 秦克章, 申茂德, 唐冬梅, 等 . 阿尔泰造山带伟晶岩型稀有金属矿化类型与成岩成矿时代[J]. 新疆地质,2013 ,31 (S1 ):1 −7 .QIN Kezhang, SHEN Maode, TANG Dongmei, et al . Intrusive and mineralization ages of Pegmatite rare element deposits in Chinese Altay[J]. Xinjiang Geology,2013 ,31 (S1 ):1 −7 .[32] 任宝琴, 张辉, 唐勇, 等 . 阿尔泰造山带伟晶岩年代学及其地质意义[J]. 矿物学报,2011 ,31 (3 ):587 −596 .REN Baoqin, ZHANG Hui, TANG Yong, et al . LA-ICP MS U-Pb zircon geochronology of the Altai pegmatites and its geological significance[J]. Acta Mineralogica Sinica,2011 ,31 (3 ):587 −596 .[33] 三金柱, 郭旭吉, 成志军, 等. 新疆卡鲁安及外围锂能源金属矿产基地深部探测技术示范[R]. 2020. [34] 申茂徳, 郭旭吉, 唐冬梅, 等. 阿尔泰稀有金属成矿规律研究与靶区优选评价[R]. 2016. [35] 申萍, 潘鸿迪, 李昌昊, 等 . 中哈俄阿尔泰稀有金属矿床时空分布、成因及成矿规律[J]. 地球科学与环境学报,2021 ,43 (3 ):487 −505 .SHEN Ping, PAN Hongdi, LI Changhao, et al . Temporal-spatial distribution, genesis and metallogenic regularity of the rare Metal deposits in Altay of China, Kazakhstan and Russia[J]. Journal of Earth Sciences and Environment,2021 ,43 (3 ):487 −505 .[36] doi: 10.18654/1000-0569/2021.12.07孙政浩, 秦克章, 毛亚晶, 等 . 塔里木北缘波孜果尔碱性(花岗)岩铌-钽-锆-铷-稀土矿床钠铁闪石、霓石特征及意义[J]. 岩石学报,2021 ,37 (12 ):3687 −3711 . doi: 10.18654/1000-0569/2021.12.07SUN Zhenghao, QIN Kezhang, MAO Yajing, et al . Characteristics and significance of aegirine and arfvedsonite in Boziguoer Nb-Ta-Zr-Rb-REE deposit related to alkaline granite, Xinjiang[J]. Acta Petrologica Sinica,2021 ,37 (12 ):3687 −3711 .[37] 王登红, 陈毓川, 徐志刚 . 新疆阿尔泰印支期伟晶岩的成矿年代学研究[J]. 矿物岩石地球化学通报,2003 ,22 (1 ):14 −17 .WANG Denghong, CHEN Yuchuan, XU Zhigang . 40Ar/39Ar isotope dating on muscovites from indosinian rare metal deposits in Central Altay, Northwestern China[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2003 ,22 (1 ):14 −17 .[38] 王登红, 陈毓川, 徐志刚, 等. 阿尔泰成矿省的成矿系列及成矿规律[M]. 北京: 原子能出版社, 2002, 1–493. [39] 王登红, 陈毓川, 邹天人, 等 . 新疆阿尔泰阿祖拜稀有金属-宝石矿床的成矿时代—燕山期稀有金属成矿的新证据[J]. 地质论评,2000 ,46 (3 ):307 −311 .WANG Denghong, CHEN Yuan, ZOU Tianren, et al . 40Ar/39Ar dating for the Azubai rare metal-gem deposit in Altay, Xinjiang-New evidence for Yanshanian mineralization of rare metals[J]. Geological Review,2000 ,46 (3 ):307 −311 .[40] 王春龙, 秦克章, 唐冬梅, 等 . 阿尔泰阿斯喀尔特Be-Nb-Mo矿床年代学、锆石Hf同位素研究及其意义[J]. 岩石学报,2015 ,31 (8 ):2337 −2352 .WANG Chunlong, QIN Kezhang, TANG Dongmei, et al . Geochronology and Hf isotope of zircon for the Arskartor Be–Nb–Mo deposit in Altay and its geological implications[J]. Acta Petrologica Sinica,2015 ,31 (8 ):2337 −2352 .[41] 王京彬, 王玉往, 何志军 . 东天山大地构造演化的成矿示踪[J]. 中国地质,2006 ,33 (3 ):461 −469 .WANG Jingbin, WANG Yuwang, HE Zhijun . Ore deposits as a guide to the tectonic evolution in the East Tianshan Mountains, NW China[J]. Geology in China,2006 ,33 (3 ):461 −469 .[42] 王涛, 童英, 李舢, 等 . 阿尔泰造山带花岗岩时空演变、构造环境及地壳生长意义—以中国阿尔泰为例[J]. 岩石矿物学杂志,2010 ,29 (6 ):595 −618 .WANG Tao, TONG Ying, LI Shan, et al . Spatial and temporal variations of granitoids in the Altay orogen and their implications for tectonic setting and crustal growth: perspectives from Chinese Altay[J]. Acta Petrologica et Mineralogica,2010 ,29 (6 ):595 −618 .[43] doi: 10.18654/1000-0569/2021.09.02吴昌志, 贾力, 雷如雄, 等 . 中亚造山带天河石花岗岩及相关铷矿床的主要特征与研究进展[J]. 岩石学报,2021 ,37 (9 ):2604 −2628 . doi: 10.18654/1000-0569/2021.09.02WU Changzhi1, JIA Li, LEI Ruxiong, et al . Advances and general characteristics of the amazonite granite and related rubidium deposits in Central Asian Orogenic Belt[J]. Acta Petrologica Sinica,2021 ,37 (9 ):2604 −2628 .[44] 肖昱, 李顺庭, 任经武, 等 . 新疆西南天山哈拉峻地区富碱花岗岩稀有金属含矿性研究—以巴什苏洪岩体为例[J]. 矿产勘查,2021 ,12 (7 ):1548 −1555 .XIAO Yu, LI Shunting, REN Jingwu, et al . Study on rare metal ore-bearing property of alkali-rich granite in Halajun area of Tianshan mountains, SW Xinjiang: a case study of Basisuhong rock mass[J]. Mineral Exploration,2021 ,12 (7 ):1548 −1555 .[45] 谢明材, 苏本勋, 王忠梅, 等 . 塔里木北缘与碱性岩有关的稀有—稀土矿床成矿作用研究[J]. 地质科学,2020 ,55 (2 ):420 −438 .XIE Mingcai, SU Benxun, WANG Zhongmei, et al . Research on the characteristics of rare and rare earth deposits associated with aIkaIine rocks in the northern margin of Tarim, Xinjiang[J]. Chinese Journal of Geology,2020 ,55 (2 ):420 −438 .[46] 徐海明, 邹天人, 方景玲, 等 . 新疆波孜果尔铌钽矿成矿床时代及成因研究[J]. 矿床地质,2012 ,31 (S1 ):625 −626 .XU Haiming, ZOU Tianren, FANG Jingling, et al . Study on age and genesis of niobium-tantalum deposit in Bozigoer, Xinjiang[J]. Mineral Deposits,2012 ,31 (S1 ):625 −626 .[47] 杨成栋, 丁建刚, 杨富全, 等 . 新疆阿尔泰别也萨麻斯矿区奥陶纪花岗岩岩石地球化学特征及其地质意义[J]. 地质论评,2020 ,66 (6 ):1499 −1514 .YANG Chengdong, DING Jiangang, YANG Fuquan, et al . Geochemistry and its geological significance of the Ordovician granite from the Bieyesamasi deposit, Altay, Xinjiang[J]. Geological Review,2020 ,66 (6 ):1499 −1514 .[48] 杨富全, 张忠利, 王蕊, 等. 新疆阿尔泰稀有金属矿地质特征及成矿作用[J]. 大地构造与成矿学, 2018, 42(6): 1010–1026. YANG Fuquan, ZHANG Zhongli, WANG Rui, et al. Geological characteristics and metallogenesis of rare metal deposits in Altay, Xinjiang. Geotectonica et Metallogenia[J]. 2018, 42(6): 1010–1026. [49] 杨富全, 王立本, 叶锦华, 等 . 新疆霍什布拉克地区花岗岩锆石U-Pb年龄[J]. 中国区域地质,2001 ,20 (3 ):267 −273 .YANG Fuquan, WANG Liben, YE Jinhua, et al . Zircon U-Pb ages of granites in the Huoshibulak area, Xinjiang[J]. Regional Geology of China,2001 ,20 (3 ):267 −273 .[50] 杨林春, 郑清连, 郑勇, 等 . 西南天山巴什索贡岩体岩石地球化学特征及地质意义[J]. 新疆地质,2016 ,34 (1 ):93 −99 .YANG Linchun, ZHENG Qinglian, ZHENG Yong, et al . The geochemical characteristics and geological significance of Bashisuogong pluton in southwest Tianshan[J]. Xinjiang Geology,2016 ,34 (1 ):93 −99 .[51] 余元军, 万建领, 闫佐, 等 . 新疆阿图什苏洪东碱性花岗岩型铌钽富矿脉的发现及意义[J]. 地质学刊,2021 ,45 (3 ):225 −229 .YU Yuanjun, WAN Jianling, YAN Zuo, et al . Discovery and significance of the Suhongdong alkaline granite-type Nb-Ta-enriched vein in Artux, Xinjiang[J]. Journal of Geology,2021 ,45 (3 ):225 −229 .[52] 中国地质科学院全球矿产资源战略研究中心. 2019年全球矿产资源形势分析报告[R]. 2020. [53] 周天怡. 中国新疆阿祖拜伟晶岩型海蓝宝石成因研究[D]. 北京: 北京大学, 2015, 124. ZHOU Tianyi. Genetic study on aquamarine of Azubai pegmatitic type in Xinjiang, China (Doctor dissertation research paper) [D]. Beijing: Peking University, 2015, 124. [54] 邹思远. 塔里木大火成岩省晚期岩浆事件与演化过程[D]. 杭州: 浙江大学, 2016, 33–34. ZOU Siyuan. Late magmatic events and evolution in Tarim volcanic diagenetic Province[D]. Hangzhou: Zhejiang University, 2016, 33–34. [55] 邹天人, 李庆昌. 中国新疆稀有及稀土金属矿床[M]. 北京: 地质出版社, 2006, 1–264. [56] 邹天人, 徐珏, 陈伟十, 等 . 塔里木盆地北缘碱性岩型稀有稀土矿床[J]. 矿床地质,2002 ,21 (S1 ):845 −848 .ZOU Tianren, XU Jue, CHEN Weishi, et al . Rare and rare earth mineral deposits related to alkaline rocks on northern margin of Tarim Basin, Xinjing, China[J]. Mineral Deposits,2002 ,21 (S1 ):845 −848 .[57] 张辉, 吕正航, 唐勇 . 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向[J]. 矿床地质,2019 ,38 (4 ):792 −814 .ZHANG Hui, LÜ Zhenghang, TANG Yong . Metallogeny and prospecting model as well as prospecting direction of pegma-tite-type rare metal ore deposits in Altay orogenic belt, Xinjiang[J]. Mineral Deposits,2019 ,38 (4 ):792 −814 .[58] 张辉, 唐勇, 吕正航, 等. 新疆阿尔泰成矿带哈龙-青河一带稀有金属成矿规律及找矿靶区预测研究[R]. 2014, 1–154. [59] 张亚峰, 蔺新望, 郭岐明, 等 . 阿尔泰南缘可可托海地区阿拉尔花岗LA-ICP-MS锆石U-Pb定年、岩石地球化学特征及其源区意义[J]. 地质学报,2015 ,89 (2 ):339 −354 .ZHANG Yafeng, LIN Xinwang, GUO Qiming, et al . LA-ICP-MS zircon U-Pb dating and geochemistry of Aral granitic plutons in Koktokay Area in the southern Altay margin and their source significance[J]. Acta Geologica Sinica,2015 ,89 (2 ):339 −354 .[60] Annikova I Yu, Vladimirov A G, Vystavnoi S A, et al . U–Pb and 39Ar/40Ar dating and Sm–Nd and Pb–Pb isotope systematics of the Kalguty Mo–W ore-magmatic system, Southern Altai[J]. Petrologiya,2006 ,14 (2 ):90 −108 .[61] doi: 10.1016/j.oregeorev.2014.07.008Che Xudong, Wu Fuyuan, Wang Rucheng, et al . In situ U–Pb isotopic dating of columbite–tantalite by LA–ICP–MS[J]. Ore Geology Reviews,2015 ,65 :979 −989 .[62] doi: 10.1017/S0016756801006100Chen Bin, Jahn Borming . Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of northwest China and their tectonic implications[J]. Geological Magazine,2002 ,139 (1 ):1 −13 .[63] doi: 10.1016/j.oregeorev.2021.104636Chen Boyang, Wu Changzhi, Brzozowski Matthew J, et al . Geochronology and tectonic setting of the giant Guobaoshan Rb deposit, Central Tianshan, NW China[J]. Ore Geology Reviews,2022 ,141 :104636 .[64] doi: 10.1007/s12583-017-0808-7Chen Chao, Lü Xinbiao, Wu Chunming, et al . Origin and geodynamic implications of concealed granite in Shadong Tungsten deposit, Xinjiang, China: Zircon U-Pb chronology, geochemistry, and Sr-Nd-Hf isotope constraint[J]. Journal of Earth Science,2018 ,29 :114 −129 .[65] doi: 10.1080/00206819509465407Dobretsov N L, Berzin N A, Buslov M . Opening and tectonic evolution of the Paleo-Asian Ocean[J]. International Geology Review,1995 ,37 :335 −360 .[66] Feng Yonggang, Liang Ting, Linnen Robert, et al. LA-ICP-MS dating of high-uranium columbite from No. 1 pegmatite at Dakalasu, the Chinese Altay orogen: Assessing effect of metamictization on age concordance[J]. Lithos, 2020, 362–363: 105461. [67] doi: 10.3390/min9080456Feng Yonggang, Liang Ting, Zhang Zhongli, et al . Columbite U-Pb geochronology of Kalu’an lithium pegmatites in northern Xinjiang, China: Implications for genesis and emplacement history of rare element pegmatites[J]. Minerals,2019 ,9 (8 ):456 .[68] doi: 10.1016/j.jseaes.2024.106071Gao Jianfeng, Wang Haohua . Permian mafic-ultramafic magmatism and sulfide mineralization in the Central Asian Orogenic Belt: A review[J]. Journal of Asian Earth Sciences,2024 ,264 :106071 .[69] doi: 10.1016/j.rgg.2018.07.020Gaskov I V . Features of magmatim-related metallogeny of Gorny Altai and Rudny Altai (Russia)[J]. Russian Geology and Geophysics,2018 ,59 :1010 −1021 .[70] doi: 10.1073/pnas.1717152115Gulley A L, Nassar N T, Xun S . China, the United States, and competition for resources that enable emerging technologies[J]. Proceedings of the National Academy of Sciences,2018 ,115 (16 ):4111 −4115 .[71] doi: 10.1016/j.earscirev.2017.09.012Han Yigui, Zhao Guochun . Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean[J]. Earth-Science Reviews,2018 ,186 :129 −152 .[72] Han Chunming, Xiao Wenjiao, Su Benxun, et al. Late Paleozoic metallogenesis and evolution of the Chinese Western Tianshan Collage, NW China, Central Asia orogenic belt[J]. Ore Geology Reviews, 2020, 124: 103643. [73] doi: 10.1016/j.oregeorev.2014.07.017Li Xiaofeng, Wang Guo, Mao Wei, et al . Fluid inclusions, muscovite Ar–Ar age, and fluorite trace elements at the Baiyanghe volcanic Be–U–Mo deposit, Xinjiang, northwest China: Implication for its genesis[J]. Ore Geology Reviews,2015 ,64 :387 −399 .[74] Liu Feng, Zhang Zhixin, Li Qiang, et al . New precise timing constraint for the Keketuohai No. 3 pegmatite in Xinjiang, China, and identification of its parental pluton[J]. Ore Geology Reviews,2014 ,6 :209 −219 .[75] doi: 10.1016/j.oregeorev.2019.103265Liu Siyu, Wang Rui, Jeon H, et al . Indosinian magmatism and rare metal mineralization in East Tianshan orogenic belt: An example study of Jingerquan Li-Be-Nb-Ta pegmatite deposit[J]. Ore Geology Reviews,2020 ,116 :103265 .[76] doi: 10.1016/j.lithos.2012.08.005Lü Zhenghang, Zhang Hui, Tang Yong, et al . Petrogenesis and magmatic–hydrothermal evolution time limitation of Kelumute No. 112 pegmatite in Altay, Northws[J]. Lithos,2012 ,154 :374 −391 .[77] Lü Zhenghang, Zhang Hui, Tang Yong, et al. Anatexis origin of rare metal/earth pegmatites: Evidences from the Permian pegmatites in the Chinese Altai[J]. Lithos, 2021, 380–381: 105865. [78] doi: 10.1016/j.oregeorev.2018.02.022Lü Zhenghang, Zhang Hui, Tang Yong, et al . Petrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altai: Evidences from geology, mineralogy, zircon U-Pb age and Hf isotope[J]. Ore Geological Review,2018 ,95 :161 −181 .[79] Mao Qiqui, Wang Jingbin, Xiao Wenjiao, et al. From Ordovician nascent to early Permian mature arc in the southern Altaids: Insights from the Kalatage inlier in the Eastern Tianshan, NW China[J]. Geosphere, 2021, 17: 647–683. [80] doi: 10.1002/gj.3392Muhtar M N, Wu Changzhi, Santosh M, et al . Peraluminous granitoid magmatism from isotopically depleted sources: The case of Jing’erquanbei pluton in eastern Tianshan, Northwest China[J]. Geological Journal,2020 ,55 (1 ):117 −132 .[81] Wang Tao, Hong Dawei, Jahn Borming, et al. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, Northwest China: implications for the tectonic evolution of an accretionary orogeny[J]. Journal of Geology, 2006, 114: 735–751. [82] doi: 10.1016/j.oregeorev.2006.10.001Wang Tao, Tong Ying, Jahn Borming, et al . SHRIMP U-Pb Zircon geochronology of the Altai No. 3 Pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite[J]. Ore Geology Reviews,2007 ,32 :325 −336 .[83] Sololova E N, Smirnov S Z, Astrelina E I, et al. Ongonite–elvan magmas of the Kalguty ore-magmatic system (Gorny Altai): composition, fluid regime, and genesis[J]. Russian Geology and Geophysics, 2011, 52: 1378–1400. [84] doi: 10.1016/j.oregeorev.2013.04.002Yang Fuquan, Mao Jingwen, Liu Feng, et al . A review of the geological characteristics and mineralization history of iron deposits in the Altay orogenic belt of the Xinjiang, Northwest China[J]. Ore Geology Reviews,2013 ,54 :1 −16 .[85] Yang Fuquan, Geng Xinxia, Wang Rui, et al. A synthesis of mineralization styles and geodynamic settings of the Paleozoic and Mesozoic metallic ore deposits in the Altay Mountains, NW China[J]. Journal of Asian Earth Sciences, 2018, 159: 233–258. [86] doi: 10.1016/j.jseaes.2016.04.020Zhang Xin, Zhang Hui, Ma Zanlong, et al . A new model for the granite–pegmatite genetic relationships in the Kaluan–Azubai–Qiongkuer pegmatite-related ore fields, the Chinese Altay[J]. Journal of Asian Earth Sciences,2016 ,124 :139 −155 .[87] doi: 10.1111/1755-6724.15055Zhang Zhenlong, Yang Fuquan, Zhou Taofa, et al . Geochronology and geochemistry of the Early Paleozoic ore-host volcanic sequence in the Kalatag area, East Tianshan, NW China: Implication for tectonic evolution[J]. Acta Geologica Sinica (English Edition),2023 ,97 (5 ):1372 −1387 .[88] Zhi Jun, Lei Ruxiong, Chen Boyang, et al. Zircon genesis and geochronology for the Zhangbaoshan super-large rubidium deposit in the Eastern Tianshan, NW China: Implication to magmatic-hydrothermal evolution and mineralization processes[J]. Frontiers in Earth Science, 2021, 9: 682720. [89] Zhou Qifeng, Qin Kezhang, Tang Dongmei, et al . LA-ICP-MS U–Pb zircon, columbite- tantalite and 40Ar–39Ar muscovite age constraints for the rare-element pegmatite dykes in the Altai orogenic belt, NW China[J]. Geological Magazine,2016 ,155 (3 ):707 −728 .[90] doi: 10.1111/rge.12067Zhou Qifeng, Qin Kezhang, Tang Dongmei, et al . Formation age and evolution time span of the Koktokay No. 3 pegmatite, Altai, NW China: evidence from U-Pb Zircon and 40Ar–39Ar Muscovite Ages[J]. Resource Geology,2015 ,65 (3 ):210 −231 .[91] doi: 10.1016/j.jseaes.2005.01.007Zhu Yongfeng, Zeng Yishan, Gu Libing . Geochemistry of the rare metal-bearing pegmatite No. 3 vein and related granites in the Keketuohai region, Altay Mountains, northwest China[J]. Journal of Asian Earth Sciences,2006 ,27 :61 −77 . -