新疆和田县509道班西锂矿地质构造特征及控矿构造研究

解程皓, 李永, 刘伟, 李国军, 陈正乐, 王来兴, 王彦龙. 2025. 新疆和田县509道班西锂矿地质构造特征及控矿构造研究. 西北地质, 58(4): 234-249. doi: 10.12401/j.nwg.2025001
引用本文: 解程皓, 李永, 刘伟, 李国军, 陈正乐, 王来兴, 王彦龙. 2025. 新疆和田县509道班西锂矿地质构造特征及控矿构造研究. 西北地质, 58(4): 234-249. doi: 10.12401/j.nwg.2025001
XIE Chenghao, LI Yong, LIU Wei, LI Guojun, CHEN Zhengle, WANG Laixing, WANG Yanlong. 2025. Geological Structural Characteristics and Ore-controlling Structures of the West 509-Daoban Li Deposit, Hetian, Xinjiang. Northwestern Geology, 58(4): 234-249. doi: 10.12401/j.nwg.2025001
Citation: XIE Chenghao, LI Yong, LIU Wei, LI Guojun, CHEN Zhengle, WANG Laixing, WANG Yanlong. 2025. Geological Structural Characteristics and Ore-controlling Structures of the West 509-Daoban Li Deposit, Hetian, Xinjiang. Northwestern Geology, 58(4): 234-249. doi: 10.12401/j.nwg.2025001

新疆和田县509道班西锂矿地质构造特征及控矿构造研究

  • 基金项目: 国家自然科学基金项目“西昆仑-松潘甘孜伟晶岩型锂等大型稀有金属成矿带成矿规律与找矿潜力研究”(92262302)
详细信息
    作者简介: 解程皓(1991–),男,工程师,主要从事构造地质学及矿产勘查工作。E–mall:292045101@qq.com
  • 中图分类号: P613;P618.71

Geological Structural Characteristics and Ore-controlling Structures of the West 509-Daoban Li Deposit, Hetian, Xinjiang

  • 509道班西锂矿位于西昆仑–喀喇昆仑山脉东段,特提斯构造域北缘,是最近认定的超大型伟晶岩型锂矿。通过对矿区地质构造及控矿构造的研究,厘清了该矿区的构造特征及构造控矿模式。该矿床出露在三叠系巴彦喀拉山群浅变质碎屑岩中,处于大红柳滩–郭扎错断裂与奇台达板断裂之间,矿区内及其周边岩浆岩较发育,受断裂构造控制,主构造方向呈NW–SE向。结合区域演化事件,对构造–岩浆控矿模式展开研究发现,矿体形成、就位及后期改造主要受三期构造控制。①成矿期前:受二叠纪—三叠纪NE–SW向构造挤压应力影响,地层形成韧性逆冲走滑断层,为矿体运移就位提供了空间。②成矿期:晚三叠世末期岩浆岩侵位伴生形成的一系列张裂隙(节理)为含矿岩浆热液运移与矿质富集提供了有利空间,形成超大型锂矿。③成矿期后,白垩纪—第四纪受印度洋板块与亚欧板块碰撞影响,矿区内发育脆性破矿构造,矿体受到有限破坏。这些认识对矿区外围及深部找矿工作具有重要的指导意义。

  • 加载中
  • 图 1  西昆仑地区大地构造位置图(a.据乔耿彪等,2020修改)、大红柳滩区域地质图(b.据王威等,2022修改)及509道班西锂铍稀有金属矿矿区地质简图(c.内部资料)

    Figure 1. 

    图 2  矿区构造剖面示意图

    Figure 2. 

    图 3  韧性右旋逆冲断层地质特征

    Figure 3. 

    图 4  脆性右旋走滑兼逆冲断层构造特征

    Figure 4. 

    图 5  矿区褶皱构造特征

    Figure 5. 

    图 6  矿区张裂隙地质特征

    Figure 6. 

    图 7  矿区共轭剪裂隙地质特征

    Figure 7. 

    图 8  509道班西锂矿岩浆-构造控矿模式图

    Figure 8. 

  • [1]

    丁坤, 梁婷, 周义等. 西昆仑大红柳滩黑云母二长花岗岩岩石成因: 来自锆石U-Pb年龄及Li-Hf同位素的证据[J]. 西北地质, 2020, 53(1): 24−34.

    DING Kun, LIANG Ting, ZHOU Yi, et al. Petrogenesis of Dahongliutan Biotite Monzogranite in Western Kunlun Orogen: Evidence from Zircon U-Pb Age and Li-Hf Isotope[J]. Northwesten Geology,2020,53(1):24−34.

    [2]

    董连慧, 徐兴旺, 范廷宾, 等. 喀喇昆仑火烧云超大型喷流—沉积成因碳酸盐型 Pb—Zn 矿的发现及区域成矿学意义[J]. 新疆地质, 2015, 33(1): 41−50.

    DONG Lianhui, XU Xingwang, FAN Tingbin, et. al. Discovery of the Huoshaoyun super-large exhalative-sedimentary carbonate Pb-Zn deposit in the western Kunlun area and its great significance for regional metallogeny[J]. Xinjiang Geology,2015,33(1):41−50.

    [3]

    董连慧, 冯京, 刘德权, 等. 新疆成矿单元划分方案研究[J]. 新疆地质, 2010, 28(1): 1−15.

    DONG Lianhui, FENG Jing, LIU Dequan, et al. Research for classification of metallogenic unit of Xinjiang[J]. Xinjiang Geology,2010,28(1):1−15.

    [4]

    凤永刚, 王艺茜, 张泽, 等. 新疆大红柳滩伟晶岩型锂矿床中磷铁锂矿地球化学特征及其对伟晶岩演化的指示意义[J]. 地质学报, 2019, 93(6): 1405−1421.

    FENG Yonggang,WANG Yiqian,ZHANG Ze,et al. Geochemistry of triphylite in dahongliutan lithium pegmatites,xinjiang: implications for pegmatite evolution[J]. Acta Geologica Sinica,2019,93(6):1405−1421.

    [5]

    高永宝, 李侃, 滕家欣, 等. 新疆喀喇昆仑火烧云超大型铅锌矿床矿物学, 地球化学及成因[J]. 西北地质, 2019, 52(4): 152−169.

    GAO Yongbao, LI Kan, TENG Jiaxin, et al. Mineralogy, Geochemistry and Genesis of Giant Huoshaoyun Zn-Pb Deposit in Karakoram Area, Xinjiang, NW China[J]. Northwestern Geology,2019,52(4):152−169.

    [6]

    葛成隆, 刘栋梁, 王世广, 等. 西昆仑康西瓦断裂带西延特征及其构造意义[J]. 岩石学报, 2017, 33(12): 3942−3956.

    GE Cenglong,LIU Dongliang,WANG Shiguang,et al. The characteristics and tectonic implications of the western extension of the Karakax fault,West Kunlun[J]. Acta Petrologica Sinica,2017,33(12):3942−3956.

    [7]

    胡军, 王核, 慕生禄, 等. 西昆仑甜水海地块南屏雪山早古生代花岗岩地球化学、Hf同位素特征及其壳幔岩浆作用[J]. 地质学报, 2017, 91(6): 1192−1207.

    HU Jun, WANG He, MU Shenglu, et al. Geochemistry and Hf isotopic compositions of Early Paleozoic granites Nanpingxueshan from the Tianshuihai terrane, West Kunlun: crust mantle magmatism[J]. Acta Geologica Sinica,2017,91(6):1192−1207.

    [8]

    姜春发, 朱松年. 构造迁移论概述[J]. 中国地质科学院院报, 1992, 13(1): 1−14.

    JIANG Chunfa,ZHU Songnian. Introduction to Tectonic Migration Theory[J]. Bulletin of the Chinese Academy of Geological Sciences,1992,13(1):1−14.

    [9]

    潘桂棠, 李兴振, 王立全, 等. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报, 2002, 21(11): 701−707.

    PAN Guitang,LI Xingzeng,WANG Liquan,et al. Preliminary division of tectonic units of the Qinghai-Tibet Plateau and its adjacent regions[J]. Geological Bulletin of china,2002,21(11):701−707.

    [10]

    潘桂棠, 王立全, 李兴振, 等. 青藏高原区域构造格局及其多岛弧盆系的空间配置[J]. 沉积与特提斯地质, 2001, 21(3): 1−26.

    PAN Guitang,WANG Liquan,LI Xingzheng,et al. The tectonic framework and spatial allocation of the archipelagic arc basin systems on the Qinghai-Xizang Plateau[J]. Sedimentary Geology and Tethyan Geology,2001,21(3):1−26.

    [11]

    金谋顺, 高永宝, 李侃, 等. 伟晶岩型稀有金属矿的遥感找矿方法——以西昆仑大红柳滩地区为例[J]. 西北地质, 2019, 52(4): 222−231. doi: 10.3969/j.issn.1009-6248.2019.04.017

    JIN Moushun, GAO Yongbao, LI Kan, et al. Remote sensing prospecting method for pegmatite type rare metal deposit: taking dahongliutan area in western kunlun for example[J]. Northwestern Geology,2019,52(4):222−231. doi: 10.3969/j.issn.1009-6248.2019.04.017

    [12]

    计文化, 周辉, 李荣社, 等. 西昆仑新藏公路北段古‒中生代多期次构造‒热事件年龄确定[J]. 地球科学, 2017, 32(5): 671−680.

    JI Wenhua, ZHOU Hui, LI Rongshe, et al. The deformation age of Palaeozoic-Mesozoic tectonic along northern part of Xin-Zang road in West Kunlun[J]. Earth Science (Journal of China University of Geosciences),2017,32(5):671−680.

    [13]

    孔会磊, 任广利, 李文渊, 等. 西昆仑大红柳滩东含锂辉石花岗伟晶岩脉年代学和地球化学特征及其地质意义[J]. 西北地质, 2023, 56(2): 61−79. doi: 10.12401/j.nwg.2023004

    KONG Huilei, REN Guangli, LI Wenyuan, et al. Geochronology, Geochemistry and Their Geological Significances of Spodumene Pegmatite Veins in the Dahongliutandong Deposit, Western Kunlun, China[J]. Northwestern Geology,2023,56(2):61−79. doi: 10.12401/j.nwg.2023004

    [14]

    李海兵, 杨经绥, 许志琴, 等. 阿尔金断裂带对青藏高原北部生长、隆升的制约[J]. 地学前缘, 2006, 13(4): 59−79.

    LI Haibing,YANG Jingsui,XU Zhiqin,et al. The constraint of the Altyn Tagh fault system to the growth and rise of the northern Tibetan plateau[J]. Earth Science Frontiers,2006,13(4):59−79.

    [15]

    李侃, 高永宝, 滕家欣, 等. 新疆和田县大红柳滩一带花岗伟晶岩型稀有金属矿成矿地质特征、成矿时代及找矿方向[J]. 西北地质, 2019, 52(4): 206−221.

    LI Kan,GAO Yongbao,TENG Jiaxin,et al. Metallogenic geological characteristics,mineralization age and resource potential of the granite-pegmatite-type rare metal deposits in Dahongliutan area,Hetian County,Xinjiang[J]. Northwestern Geology,2019,52(4):206−221.

    [16]

    李荣社, 计文化, 杨永成. 昆仑山及邻区地质[M]. 北京: 地质出版社, 2008a, 1–400.

    LI Rongshe, JI Wenhua, YANG Yongcheng. Kunlun Mountains and Adjacent Area Geology[M]. Beijing: Geological Publishing House, 2008a, 1–400.

    [17]

    李荣社, 徐学义, 计文化. 对中国西部造山带地质研究若干问题的思考[J]. 地质通报, 2008b, 27(12): 2020−2025.

    LI Rongshe, XU Xueyi, JI Wenhua. Some problems of geological study in the western China orogenic belt[J]. Geological Bulletin of China,2008b,27(12):2020−2025.

    [18]

    LI Rongshe, JI Wenhua, ZHAO Zhengming, et al. Progress in the stu周兵dy of the Early Paleozoic Kunlun orogenic belt[J]. Geological,2007,26(4):373−382.

    LI Rongshe, JI Wenhua, ZHAO Zhengming, et al. Progress in the stu周兵dy of the Early Paleozoic Kunlun orogenic belt[J]. Geological, 2007, 26(4): 373−382.

    [19]

    李荣社, 杨永成, 孟勇. 青藏高原1∶25万区域地质调查主要成果和进展综述(北区)[J]. 地质通报, 2004, 23(5−6): 421−426.

    LI Rongshe, YANG Yongcheng, MENG Yong. Main results and progress in 1: 250000 regional geological survey of the northern Qinghai-Tibet Plateau[J]. Regional Geology of China,2004,23(5−6):421−426.

    [20]

    李文渊, 高永宝, 张照伟, 等. 镁铁—超镁铁质岩与花岗岩-伟晶岩“小岩体成大矿”对比——以昆仑成矿带夏日哈木和大红柳滩超大型矿床为例[J]. 地质通报, 2023, 45(5): 1036−1048.

    LI Wenyuan,GAO Yongbao,ZHANG Zhaowei,et al. Comparison of Mafic-ultrama ficand Granite-pegmatite "Small Intrusion Form-ing Large Deposit": Taking Xiarihamu and Dahong liutan Super-large Depositsin Kunlun Metallogenic Belt,Chinaas Examples[J]. Geological Bulletin of China,2023,45(5):1036−1048.

    [21]

    李文渊, 张照伟, 高永宝, 等. 昆仑古特提斯构造转换与镍钴锰锂关键矿产成矿作用研究[J]. 中国地质, 2022, 49(5): 1385−1407.

    LI Wenyuan,ZHANG Zhaowei,GAO Yongbao,et al. Tectonic transformation the Kunlun orogen of Paleo-Tethys,North China,and the metallization of critical mineral resource’s nickel,cobalt,manganese and lithium[J]. Geology in China,2022,49(5):1385−1407.

    [22]

    李永, 王威, 杜晓飞, 等. 西昆仑大红柳滩509道班西伟晶岩型稀有金属矿白云母40Ar/39Ar定年及其对区域成矿定[J]. 中国地质, 2022, 49(6): 1−6.

    LI Yong, WANG Wei, DU Xiaofei, et al. 40Ar/39Ar dating of muscovite of pegmatite type rare metal deposit in western 509 Daoban, Dahongliutan, West Kunlun and its limitation to regional mineralization[J]. Geology in China,2022,49(6):1−6.

    [23]

    彭海练, 贺宁强, 王满仓, 等. 新疆和田县大红柳滩地区509道班西稀有多金属矿地质特征与成矿规律探讨[J]. 西北地质, 2018, 51(3): 146−154. doi: 10.3969/j.issn.1009-6248.2018.03.013

    PENG Hailian, HE Ningqiang, WANG Mancang, et al. Geological characteristics and metallogenic regularity of West Track 509 rare polymetallic deposit in Dahongliutan region, Hetian, Xinjiang[J]. Northwestern Geology,2018,51(3):146−154. doi: 10.3969/j.issn.1009-6248.2018.03.013

    [24]

    潘裕生. 青藏高原第五缝合带的发现与论证[J]. 地球物理学报, 1994, 37(2): 184−192. doi: 10.3321/j.issn:0001-5733.1994.02.006

    PAN Yusheng. Discovery and evidence of the fifth suture zone of Qinghai- Xizang Plateau[J]. Acta Geophysica Sinica,1994,37(2):184−192. doi: 10.3321/j.issn:0001-5733.1994.02.006

    [25]

    潘裕生. 西昆仑山构造特征与演化[J]. 地质科学, 1990,(3): 224−232.

    PAN Yusheng. Tectonic features and evolution of the Western Kunlun Mountain region[J]. Scientia Geologica Sinica,1990,(3):224−232.

    [26]

    乔耿彪, 伍跃中, 刘拓. 西昆仑大红柳滩伟晶岩型稀有金属矿的形成时代: 来自白云母40Ar/39Ar同位素年龄的证据[J]. 中国地质, 2020, 47(5): 1591−1593.

    QIAO Gengbiao,WU Yuezhong , LIU Tuo. Formation age of the Dahongliutan pegmatite type rare metal deposit in Western Kunlun Mountains: Evidence from muscovite 40Ar/39Ar isotopic dating[J]. Geology in China,2020,47(5):1591−1593.

    [27]

    乔耿彪, 张汉德, 伍跃中, 等. 西昆仑大红柳滩岩体地质和地球化学特征及对岩石成因的制约[J]. 地质学报, 2015, 89(7): 1180−1194.

    QIAO Gengbiao,ZHANG Hande,WU Yuezhong,et al. Petrogenesis of the Dahongliutan monzogranite in western Kunlun: Constraints from SHRIMP zircon U-Pb geochronology and geochemical characteristics[J]. Acta Geologica Sinica,2015,89(7):1180−1194.

    [28]

    任广利, 孔会磊, 赵凯东, 等. 新疆喀喇昆仑大红柳滩一带锂矿光谱特征及其找矿指示意义[J]. 西北地质, 2022, 55(4): 103−114.

    REN Guangli, KONG Huilei, ZHAO Kaidong, et al. Spectral Characteristics and Prospecting Implications of Lithium Depositsin Dahongliutan Area, Karakoram, Xinjiang[J]. Northwestern Geology,2022,55(4):103−114.

    [29]

    史明震. 西昆仑大红柳滩地区锂铍多金属矿遥感示矿信息提取以及远景区预测[D].北京: 中国地质大学(北京), 2020.

    SHI Mingzheng. Remote sensing ore indication information extraction and prospective area prediction of lithium beryllium polymetallic ore in Dahongliutan, West Kunlun[D]. Beijing:China University of Geosciences(Beijing), 2020.

    [30]

    唐俊林, 柯强, 徐兴旺, 等. 西昆仑大红柳滩地区龙门山锂铍伟晶岩区岩浆演化与成矿作用[J]. 岩石学报, 2022, 38(3):655-675.

    TANG Junlin,KE Qiang,XU Xingwang,et al. Magma evolution and mineralization of Longmenshan lithium-beryllium pegmatite in Dahongliutan area,West Kunlun[J]. Acta Petrologica Sinica,2022,38(3): 655-675.

    [31]

    谭克彬. 新疆大红柳滩一带稀有金属矿产勘查新进展[J]. 世界有色金属, 2021, (14): 98−99. doi: 10.3969/j.issn.1002-5065.2021.14.044

    TAN Kebin. Progress in rare metal mineral exploration in The large Hongliutan[J]. World Nonferrous Metals,2021,(14):98−99. doi: 10.3969/j.issn.1002-5065.2021.14.044

    [32]

    王核, 徐义刚, 闫庆贺, 等. 新疆白龙山伟晶岩型锂矿床研究进展[J]. 地质学报, 2021, 95(10): 3085−3098.

    WANG He,XU Yigang,YAN Qinghe,et al. Research progress on Bailongshan pegmatite type lithium deposit,Xinjiang[J]. Acta Geologica Sinica,2021,95(10):3085−3098.

    [33]

    王核, 高昊, 马华东, 等. 新疆和田县雪凤岭锂矿床、雪盆锂矿床和双牙锂矿床地质特征及伟晶岩脉群分带初步研究[J]. 大地构造与成矿学, 2020, 44(1): 57−68.

    WANG He,GAO Hao,MA Huadong,et al. Geological characteristics and pegmatite vein group zoning of the Xuefengling,Xuepen,and Shuangya lithium deposits in Karakorum,Hetian,Xinjiang[J]. Geotectonica et Metallogenia,2020,44(1):57−68.

    [34]

    王核, 李沛, 马华东, 等. 新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义[J]. 大地构造与成矿学, 2017, 41(6): 1053−1062.

    WANG He, LI Pei, MA Huadong, et al. Discovery of the Bailongshan superlarge lithium-rubidium deposit in Karakorum, Hetian, Xinjiang, and its prospecting implication[J]. Geotectonica et Metallogenia,2017,41(6):1053−1062.

    [35]

    王威, 杜晓飞, 刘伟, 等. 西昆仑509道班西锂铍稀有金属矿地质特征与成矿时代探讨[J]. 岩石学报, 2022, 38(7): 1967−1980. doi: 10.18654/1000-0569/2022.07.10

    WANG Wei, DU Xiaofei, LIU Wei, et al. Geological characteristic and discussion on metallogenic age of the West 509-Daoban Li-Be rare metal deposit in the West Kunlun Orogenic Belt[J]. Acta Petrologica Sinica,2022,38(7):1967−1980. doi: 10.18654/1000-0569/2022.07.10

    [36]

    魏小鹏, 王核, 张晓宇, 等. 西昆仑东部晚三叠世高镁闪长岩的成因及其地质意义[J]. 地球化学, 2018, 47(4): 363−379.

    WEI Xiaopeng, WANG He, ZHANG Xiaoyu, et al. Petrogenesis of Triassic high-Mg diorites in western Kunlun orogen and its tectonic implication[J]. Geochimica,2018,47(4):363−379.

    [37]

    魏小鹏, 王核, 胡军, 等. 西昆仑 大红柳滩二云母花岗岩地球化学和地质年代学研究及其地质意义[J]. 地球化学, 2017, 46(1): 66−80.

    WEI Xiaopeng,WANG He,HU Jun,et al. Geochemistry and geochronology of the Dahongliutan two-mica granite pluton in Western Kunlun[J]. Geochimica,2017,46(1):66−80.

    [38]

    吴福元, 万博, 赵亮, 等. 特提斯地球动力学[J]. 岩石学报, 2020, 36(6): 1627−1674.

    WU Fuyuan,WAN Bo,ZHAO Liang,et al. Tethyan geodynamics[J]. Acta Petrologica Sinica,2020,36(6):1627−1674.

    [39]

    吴兆剑, 韩效忠, 林中湘, 等. 中国北方主要中新生代盆地构造沉积气候演化及其成煤、铀意义[J]. 大地构造与成矿学, 2020, 44(4): 710−724.

    WU Zhaojian, HAN Xiaozhong, LIN Zhongxiang, et al. Tectonic, sedimentary, and climate evolution of meso-cenozoic basins in North China and its significance of coal accumulation and uranium mineralization[J]. Geotecton Metallog,2020,44(4):710−724.

    [40]

    许志琴, 戚学祥, 杨经绥, 等. 西昆仑康西瓦韧性走滑剪切带的两类剪切指向、形成时限及其构造意义[J]. 地质通报, 2007, 26(10): 1252−1261.

    XU Zhiqing,QI Xuexiang,YANG Jinsui,et al. Senses and timings of two kinds of shear in the Kangxiwar strike-slip shear zone,West Kunlun,and their tectonic significance[J]. Geological Bulletin of China,2007,26(10):1252−1261.

    [41]

    肖文交, 侯泉林, 李继亮, 等. 西昆仑大地构造相解剖及其多岛增生过程[J]. 中国科学(D辑: 地球科学), 2000, 43(S1): 22−28.

    XIAO Wenjiao,HOU Quanlin,LI Jiliang,et al. Tectonic facies and the archipelago-accretion process of the West Kunlun,China[J]. Science in China (Series D),2000,43(S1):22−28.

    [42]

    肖序常, 李廷栋, 李光岑. 青藏高原的构造演化[J]. 中国地质科学院院报, 1990, 20(1): 123−125.

    XIAO Xuchang, LI Tingdong, LI Guangceng, et al. Tectonic evolution of the Qinghai-Xtzang (Tibet) Plateau[J]. Bulletin of the Chinese Academy of Geological Sciences,1990,20(1):123−125.

    [43]

    杨经绥, 李海兵. 走滑断裂对超高压变质岩石折返的贡献及青藏高原北部白垩纪隆升之新思考[J]. 地学前缘, 2006, 13(4): 80−90.

    YANG Jingsui , LI Haibin. Contributions of strike-slip faulting to exhumation of ultrahigh pressure metamorphic rocks and the Cretaceous uplift of the northern Qinghai-Tibet plateau[J]. Earth Science Frontiers,2006,13(4):80−90.

    [44]

    张传林, 马华东, 朱炳玉, 等. 西昆仑—喀喇昆仑造山带构造演化及其成矿效应[J]. 地质论评, 2019, 65(5): 1077−1102.

    ZHANG Chuanlin,MA Huadong,ZHU Binyu,et al. Tectonic evolution of the Western Kunlun-Karakorum Orogenic Belt and its coupling with the mineralization effect[J]. Geological Review,2019,65(5):1077−1102.

    [45]

    张传林, 陆松年, 于海锋, 等. 青藏高原北缘西昆仑造山带构造演化: 来自锆石SHRIMP及LA-ICP-MS测年的证据[J]. 中国科学(D辑: 地球科学), 2007, 50(6): 825−835.

    ZHANG Chuanlin,LU Songnian,YU Haifeng,et al. Tectonic evolution of the Western Kunlun orogenic belt in northern Qinghai-Tibet Plateau: Evidence from zircon SHRIMP and LA-ICP-MS U-Pb geochronology[J]. Science in China (Series D),2007,50(6):825−835.

    [46]

    Bershaw J, Garzione C N, Schoenbohm L, et al. Cenozoic evolution of the Pamir plateau based on stratigraphy, zircon provenance, and stable isotopes of foreland basin sediments at Oytag (Wuyitake) in the Tarim Basin (west China)[J]. Journal of Asian Earth Sciences,2012,44:136−148. doi: 10.1016/j.jseaes.2011.04.020

    [47]

    Cao R, Gao Y B, Chen B, et al. Pegmatite magmatic evolution and rare metal mineralization of the Dahongliutan pegmatite field, Western Kunlun Orogen: Constraints from the B isotopic composition and mineral-chemistry[J]. International Geology Review,2023,65(7):1224−1242. doi: 10.1080/00206814.2021.1899062

    [48]

    Cowgill E. Cenozoic right–slip faulting along the eastern margin of the Pamir salient, northwestern China[J]. Geological Society of America Bulletin,2010,122(1−2):145−161. doi: 10.1130/B26520.1

    [49]

    Černý P , Erict T S. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist,2005,43:2005−2026. doi: 10.2113/gscanmin.43.6.2005

    [50]

    Černý P. Fertile granites of Precambrian rare–element pegmatite fields: Is geochemistry controlled by tectonic setting or source lithologies?[J]. Precambrian Research,1991,51:429−468. doi: 10.1016/0301-9268(91)90111-M

    [51]

    Gao Y B, Bagas L, Li K, et al. Newly discovered Triassic Li deposits in the Dahongliutan area, NW China: A case study for the detection of Li-bearing pegmatite deposits in rugged terrains using remote-sensing data and images[J]. Frontiers in Earth Science,2020,8:553.

    [52]

    Hu J, Wang H,Huang C,et al. Geological characteristics and age of the Dahongliutan Fe–ore deposit in the Western Kunlun orogenic belt, Xinjiang, northwestern China[J]. Journal of Asian Earth Sciences,2016,116:1−25.

    [53]

    Jiang Y H, Jia R , Liu Z, et al. Origin of Middle Triassic high–K calc–alkaline granitoids and their potassic microgranular enclaves from the West Kunlun orogen, northwest China: A record of the closure of Paleo–Tethys[J]. Lithos,2013,156−159:13−30.

    [54]

    Jiang Y H, Liao S Y, Yang W Z, et al. An island arc origin of plagiogranites at Oytag, West Kunlun orogen, northwest China: SHRIMP zircon U–Pb chronology, elemental and Sr–Nd–Hf isotopic geochemistry and Paleozoic tectonic implications[J]. Lithos,2008,106:323−335. doi: 10.1016/j.lithos.2008.08.004

    [55]

    Jiang Y H, Ling H F, Jiang S Y, et al. Petrogenesis of a Late Jurassic peraluminous volcanic complex and its high–Mg, potassic, quenched enclaves at Xiangshan, Southeast China[J]. Journal of Petrology,2005,46:1121−1154. doi: 10.1093/petrology/egi012

    [56]

    Liu D L, Li H B , Sun Z M, et al. AFT dating constrains the Cenozoic uplift of the Qimen Tagh Mountains, Northeast Tibetan Plateau, comparison with LA–ICPMS Zircon U–Pb ages[J]. Gondwana Research,2017,41:438−450. doi: 10.1016/j.gr.2015.10.008

    [57]

    Liu X Q, Zhang C L, Zou H B, et al. Triassic–jurassic granitoids and pegmatites from western kunlun–pamir syntax: implications for the paleo–tethys evolution at the northern margin of the tibetan plateau[J]. Lithosphere,2020,1:1−22.

    [58]

    Mattern F and Schneider W. Suturing of the Proto– and Paleo–Tethys oceans in the West Kunlun (Xijiang, China)[J]. Journal of Asian Earth Sciences,2000,18:637−650. doi: 10.1016/S1367-9120(00)00011-0

    [59]

    Matte P, Tapponnier P, Arnaud N, et al. Tectonics of Western Tibet, between the Tarim and the Indus[J]. Earth and Planetary Science Letters,1996,142:311−330. doi: 10.1016/0012-821X(96)00086-6

    [60]

    Matte P, Tapponnier P, Bourjot L, et al. Tectonics of western Tibet, from the Kunlun to the Karakorum[C]. Kashi: International Symposium on the Karakorum and Kunlun Mountains, 1992: 36.

    [61]

    Sobel E R, Schoenbohm L M, Chen J, et al. Late Miocene–Pliocene deceleration of dextral slip between Pamir and Tarim: implications for Pamir orogenesis[J]. Earth and Planetary Science Letters,2011,304:369−378. doi: 10.1016/j.jpgl.2011.02.012

    [62]

    Wang Z H. Tectonic evolution of the West Kunlun orogenic belt, western China[J]. Journal of Asian Earth Sciences,2004,24:153−161.

    [63]

    Xiao W J, Windley B F, Jian P, et al. Accretionary tectonics of the West Kunlun orogen, China: A Paleozoic Early Mesozoic‒ long–lived active continental margin with implications for the growth of southern Eurasia[J]. Journal of Geology,2005,113:687−705. doi: 10.1086/449326

    [64]

    Xiao W J, Windley B F, Chen H L, et al. Carboniferous–Triassic subduction and accretion in the West Kunlun, China: Implications for the collisional and accretionary tectonics of the northern Tibetan plateau[J]. Geology,2002a,30:295−298.

    [65]

    Xiao W J, Windley B F, Hao J, et al. Arc–ophiolite obduction in the West Kunlun range (China): Implications for the Palaeozoic evolution of central Asia[J]. Journal of the Geological Society,2002b,159:517−528. doi: 10.1144/0016-764901-093

    [66]

    Xiao W J, Windley B F, Fang A M, et al. Palaeozoic Early ‒ Mesozoic accretionary tectonics of the Western Kunlun Range, NW China[J]. Gondwana Research,2001,4(4):826−827. doi: 10.1016/S1342-937X(05)70611-0

    [67]

    Yin A and Harrison T M. Geologic evolution of the Himalayan–Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences,2000,28:211−280. doi: 10.1146/annurev.earth.28.1.211

    [68]

    Zhang C L, Zou H B, Ye X T, et al. Tectonic evolution of the NE section of the Pamir Plateau: new evidence from field observations and zircon U–Pb geochronology[J]. Tectonophysics, 2018, 723: 27–40.

    [69]

    Zhang Z, Klemperer S, Bai Z, et al. Crustal structure of the Paleozoic Kunlun orogeny from an active–source seismic profile between Moba and Guide in East Tibet, China[J]. Gondwana Research,2011,19(4):994−1007. doi: 10.1016/j.gr.2010.09.008

  • 加载中

(8)

计量
  • 文章访问数:  15
  • PDF下载数:  1
  • 施引文献:  0
出版历程
收稿日期:  2023-05-25
修回日期:  2024-01-27
录用日期:  2025-01-07
刊出日期:  2025-08-20

目录