东天山黄山西铜镍硫化物矿床三维模型及其成矿启示

刘庭伟, 陈国旭, 邓宇峰, 李卫东, 韩建军, 谭治雄. 2025. 东天山黄山西铜镍硫化物矿床三维模型及其成矿启示. 西北地质, 58(4): 131-145. doi: 10.12401/j.nwg.2025029
引用本文: 刘庭伟, 陈国旭, 邓宇峰, 李卫东, 韩建军, 谭治雄. 2025. 东天山黄山西铜镍硫化物矿床三维模型及其成矿启示. 西北地质, 58(4): 131-145. doi: 10.12401/j.nwg.2025029
LIU Tingwei, CHEN Guoxu, DENG Yufeng, LI Weidong, HAN Jianjun, TAN Zhixiong. 2025. Three-Dimensional Model of the Huangshanxi Ni-Cu Sulfide Deposit and Its Implications for Mineralization, EasternTianshan, NW China. Northwestern Geology, 58(4): 131-145. doi: 10.12401/j.nwg.2025029
Citation: LIU Tingwei, CHEN Guoxu, DENG Yufeng, LI Weidong, HAN Jianjun, TAN Zhixiong. 2025. Three-Dimensional Model of the Huangshanxi Ni-Cu Sulfide Deposit and Its Implications for Mineralization, EasternTianshan, NW China. Northwestern Geology, 58(4): 131-145. doi: 10.12401/j.nwg.2025029

东天山黄山西铜镍硫化物矿床三维模型及其成矿启示

  • 基金项目: 国家自然科学基金项目(42272083、41972304),国家重大研发计划项目(2024YFC2909201),第二次青藏高原综合科学考察研究项目(2019QZKK0708),温州市科技局基础性公益科研项目(S20240037),西安市关键金属成矿与高效利用重点实验室(长安大学)开放基金(300102272503)联合资助。
详细信息
    作者简介: 刘庭伟(2000–),男,硕士研究生,从事三维地质建模研究。E–mail:17640429501@163.com
    通讯作者: 邓宇峰(1983–),男,教授,博士生导师,从事矿物学、岩石学、矿床学研究及教学。E–mail:dyfeng_214@sina.com
  • 中图分类号: P612;P628

Three-Dimensional Model of the Huangshanxi Ni-Cu Sulfide Deposit and Its Implications for Mineralization, EasternTianshan, NW China

More Information
  • 东天山黄山–镜儿泉成矿带先后发现了一系列岩浆铜镍硫化物矿床,镍储量超过100万t,是世界造山带型铜镍矿床最发育的地区之一。黄山西矿床是该区域内的大型岩浆铜镍硫化物矿床,形成于碰撞造山作用向碰撞后伸展环境,受区域性韧性剪切带和断裂构造控制;断裂构造既是岩浆侵位通道,又是硫化物熔离和聚集的主要空间。笔者基于现有钻孔、勘探线剖面图、中段地质平面图等地质资料,利用Surpac软件建立了黄山西矿床三维地质模型,根据矿体、岩体与构造的三维空间关系,以及Ni元素富集空间展布规律,并结合坑内矿石特征探讨了区域构造作用对铜镍矿体的控制作用。研究结果表明:①黄山西含矿岩体的三维形态受断层影响较大,近NEE向的F1和F10逆断层是全区最大断层,控制着各岩相的形态,形成了独特的“蝌蚪状”岩体形态和盆状剖面。② 32X号矿体成岩成矿以后受构造作用叠加使硫化物重新活化并沿着南北断裂再次富集成矿,矿石蚀变变形现象明显;30号矿体虽有一小部分受构造作用而造成硫化物富集,但其矿化过程未受显著的构造作用影响且蚀变较弱,缺乏明显的构造改造特征,总体上为岩浆沿构造侵位后的岩相主导成矿。本研究深化了黄山西矿床成岩成矿作用认识,对东天山地区成矿作用研究提供了新的视角,可为相似造山带环境下的铜镍矿床成因分析和找矿提供参考。

  • 加载中
  • 图 1  中亚造山带地质简图(a)、 东天山地区主要构造单元(b)、 黄山-镜儿泉成矿带区域地质简图(c)(据Jahn et al., 2000; Xiao et al., 2009; Deng et al., 2014; 韦帅,2021; 曹盛轩等,2024修改)

    Figure 1. 

    图 2  黄山西矿床简化地质图(a)及剖面图(b)(据李德惠等, 1989王润民, 1987修改)

    Figure 2. 

    图 3  黄山西矿床典型钻孔柱状图(据路魏魏, 2008修改)

    Figure 3. 

    图 4  黄山西矿床断层三维模型图

    Figure 4. 

    图 5  黄山西矿床各岩性三维模型图

    Figure 5. 

    图 6  黄山西矿床矿体三维模型(a)及矿体金属储量统计图(b)

    Figure 6. 

    图 7  黄山西矿床岩性与断层空间关系图

    Figure 7. 

    图 8  黄山西矿床主要矿体与岩性空间关系图

    Figure 8. 

    图 9  黄山西矿床30号、32X号矿体品位相对密度直方图

    Figure 9. 

    图 10  黄山西矿床矿体与断层空间关系图

    Figure 10. 

    图 11  30号与32X号矿体品位到断层相交线距离密度散点图

    Figure 11. 

    图 12  30号与32X号矿体高程–品位密度散点图与高品位矿体三维块体模型

    Figure 12. 

    图 13  黄山西矿床坑内矿石及镜下显微照片

    Figure 13. 

  • [1]

    曹盛轩, 哈依热提, 邓宇峰, 等. 岩浆铜镍硫化物矿床中地壳硫的深部来源: 来自黄山东矿床的证据[J]. 地质科学, 2024, 596): 15881602. doi: 10.12017/dzkx.2024.110

    CAO Shengxuan, HAYIRETI, DENG Yufeng, et al. Deep Source of Crustal Sulfur in Magmatic Cu-Ni Sulfide Deposits: Evidence from the Huangshandong Deposit[J]. Chinese Journal of Geology, 2024, 596): 15881602. doi: 10.12017/dzkx.2024.110

    [2]

    陈文, 孙枢, 张彦, 等. 新疆东天山秋格明塔什—黄山韧性剪切带40Ar/39Ar年代学研究[J]. 地质学报, 2005, 796): 790804.

    CHEN Wen, SUN Shu, ZHANG Yan, et al. 40Ar/39Ar Geochronology of the Qiugemingtashi-Huangshan Ductile Shear Zone in East Tianshan, Xinjiang, NW China[J]. Acta Geologica Sinica, 2005, 796): 790804.

    [3]

    陈陶成. 新疆哈密黄山—镜儿泉铜镍矿带成矿地质背景及矿例介绍[J]. 西北地质, 1990, 231): 2025.

    CHEN Taocheng. Geological Setting of Ore-Forming and Mineral Deposit Samples in Huangshan-Jingerquan Cu-Ni Ore Belt, Hami, Xinjiang[J]. Northwestern Geology, 1990, 231): 2025.

    [4]

    陈国旭, 吴冲龙, 张夏林, 等. 基于投影图的矿体三维可视化模型动态构建及资源储量评价[J]. 应用基础与工程科学学报, 2015, 234): 740749.

    CHEN Guoxu, WU Chonglong, ZHANG Xialin, et al. 3D Orebody Dynamic Modeling and Mineral Resources VisualizedEvaluating Based on Projection Map[J]. Journal of Basic Science and Engineering, 2015, 234): 740749.

    [5]

    陈国旭, 田宜平, 张夏林, 等. 基于勘探剖面的三维地质模型快速构建及不确定性分析[J]. 地质科技情报, 2019, 382): 275280.

    CHEN Guoxu, TIAN Yiping, ZHANG Xialin, et al. Rapid Construction and Uncertainty Analysis of 3D Geological Models Based on Exploration Sections[J]. Bulletin of Geological Science and Technology, 2019, 382): 275280.

    [6]

    邓宇峰, 宋谢炎, 陈列锰, 等. 东天山黄山西含铜镍矿镁铁-超镁铁岩体岩浆地幔源区特征研究[J]. 岩石学报, 2011, 2712): 36403652.

    DENG Yufeng, SONG Xieyan, CHEN Liemeng, et al. Features of The Mantle Source of The Huangshanxi Ni-Cu Sulfide-Bearing Mafic-Ultramafic Intrusion, Eastern Tianshan[J]. Acta Petrologica Sinica, 2011, 2712): 36403652.

    [7]

    范育新, 张铭杰. 超大型铜镍硫化物矿床研究进展[J]. 甘肃地质学报, 1999, 152): 4752.

    FAN Yuxin, ZHANG Mingjie. Progress on The Study of Super-Large Cu-Ni Sulfide Deposit[J]. Acta Geologica Gansu, 1999, 152): 4752.

    [8]

    高晓峰, 隋清霖, 尤敏鑫, 等. 造山带岩浆铜镍硫化物矿床深部动力学机制探讨[J]. 西北地质, 2025, 583): 206220. doi: 10.12401/j.nwg.2025012

    GAO Xiaofeng, SUI Qinglin, YOU Minxin, et al. Study on Dynamic Mechanism of Magmatic Copper-Nickel Sulfide Deposits in Orogenic Belts[J]. Northwestern Geology, 2025, 583): 206220. doi: 10.12401/j.nwg.2025012

    [9]

    顾连兴, 张遵忠, 吴昌志, 等. 东天山黄山-镜儿泉地区二叠纪地质-成矿-热事件: 幔源岩浆内侵及其地壳效应[J]. 岩石学报, 2007, 2311): 28692880. doi: 10.3969/j.issn.1000-0569.2007.11.017

    GU Lianxing, ZHANG Zunzhong, WU Zhichang, et al. Permian geological, metallurgical and geothermal events of the Huangshan-Jing' erquan area, eastern Tianshan: indications for mantle magma intraplating and its effect on the crust[J]. Acta Petrologica Sinica, 2007, 2311): 28692880. doi: 10.3969/j.issn.1000-0569.2007.11.017

    [10]

    胡继春, 陈静, 何书跃, 等. 东昆仑五龙沟地区糜棱岩化花岗岩年代学、岩石成因及其构造意义[J]. 西北地质, 2017, 503): 5464. doi: 10.3969/j.issn.1009-6248.2017.03.007

    HU Jichun, CHEN Jing, HE Shuyue, et al. Geochronology and Petrogenesis of Mylonitized Granite from Wulonggou Area in East Kunlun and Its Tectonic Significance[J]. Northwestern Geology, 2017, 503): 5464. doi: 10.3969/j.issn.1009-6248.2017.03.007

    [11]

    刘伟栋, 王硕, 魏翔, 等. 小岩体叠加成矿作用在新一轮找矿突破战略行动中的应用: 以勉略宁矿集区为例[J]. 西北地质, 2024, 575): 4052.

    LIU Weidong, WANG Shuo, WEI Xiang, et al. Application of Superimposed Mineralization of Small Intrusions in the New Round of Prospecting Breakthrough Action: A Case Study of Mian-Lue-Ning Ore Concentration Area[J]. Northwest ern Geology, 2024, 575): 4052.

    [12]

    黄河, 王涛, 童英, 等. 中国西天山古生代岩浆岩时空架构、源区特征及构造背景[J]. 西北地质, 2024, 57(6): 25−43.

    HUANG He, WANG Tao, TONG Ying, et al. Spatial and Temporal Framework, Evolution of Magma Sources, and Tectonic Settings of Paleozoic Magmatic Rocks in West Tianshan, China[J]. Northwestern Geology, 2024, 57(6): 25−43.

    [13]

    李德惠, 包相臣, 张伯南, 等. 黄山铜镍成矿带地质、地球物理和地球化学综合研究及找矿靶区优选报告(国家“305”项目报告)[R]. 成都: 成都理工学院, 1989.

    [14]

    路魏魏, 王恒, 任刚, 等. 新疆哈密市黄山铜镍矿补充详查报告[R]. 新疆哈密: 新疆地矿局第六地质大队, 2008.

    [15]

    毛亚晶, 秦克章, 唐冬梅, 等. 东天山岩浆铜镍硫化物矿床的多期次岩浆侵位与成矿作用——以黄山铜镍矿床为例[J]. 岩石学报, 2014, 306): 15751594.

    MAO Yajing, QIN Kezhang, TANG Dongmei, et al. Multiple Stages of Magma Emplacement and Mineralization of Eastern Tianshan, Xinjiang: Examplified by The Huangshan Ni-Cu Deposit[J]. Acta Petrologica Sinica, 2014, 306): 15751594.

    [16]

    毛先成, 张苗苗, 邓 浩, 等. 矿区深部隐伏矿体三维可视化预测方法[J]. 地质学刊, 2016, 403): 363371. doi: 10.3969/j.issn.1674-3636.2016.03.363

    MAO Xiancheng, ZHANG Miaomiao, DENG Hao, et al. Three-Dimensional Visualization Prediction Method for Concealed Ore Bodies in Deep Mining Areas[J]. Journal of Geology, 2016, 403): 363371. doi: 10.3969/j.issn.1674-3636.2016.03.363

    [17]

    裴荣富, 吴良士. 在我国开展寻找超大型矿床的若干基础研究问题的讨论[J]. 矿床地质, 1990, 93): 287289.

    PEI Rongfu, WU Liangshi. Some Problems Concerning Fundamental Researches on The Prospecting for Supergiant Ore Deposits in China[J]. Mineral Deposits, 1990, 93): 287289.

    [18]

    秦克章, 唐冬梅, 苏本勋, 等. 北疆二叠纪镁铁-超镁铁岩铜、镍矿床的构造背景、岩体类型、基本特征、相对剥蚀程度、含矿性评价标志及成矿潜力分析[J]. 西北地质, 2012, 454): 83116. doi: 10.3969/j.issn.1009-6248.2012.04.009

    QIN Kezhang, TANG Dongmei, SU Benxun, et al. The Tectonic Setting, Style, Basic Feature, Relative Erosion Deee, ore-Bearing Evaluation Sign, Potential Analysis of Mineralization of Cu-Ni-Bearing Permian Mafic-ultramafic Complexes, Northern Xinjiang[J]. Northwesten Geology, 2012, 454): 83116. doi: 10.3969/j.issn.1009-6248.2012.04.009

    [19]

    三金柱, 秦克章, 汤中立, 等. 东天山图拉尔根大型铜镍矿区两个镁铁-超镁铁岩体的锆石U-Pb定年及其地质意义[J]. 岩石学报, 2010, 2610): 30273033.

    SAN Jinzhu, QIN Kezhang, TANG Zhongli, et al. Precise zircon U-Pb age dating of two mafic-ultramafic complexes at Tulargen large Cu-Ni district and its geological implications[J]. Acta Petrologica Sinica, 2010, 2610): 30273033.

    [20]

    宋谢炎. 岩浆通道成矿核心内涵“两深一浅一通道”及其找矿意义[J]. 地质学报, 2024, 987): 19411952.

    SONG Xieyan. The Core Connotation of Magma Conduit Model “Two Deep, One Shallow and Single Channel” and Its Significances on Exploration[J]. Acta Geologica Sinica, 2024, 987): 19411952.

    [21]

    宋谢炎, 肖家飞, 朱丹, 等. 岩浆通道系统与岩浆硫化物成矿研究新进展[J]. 地学前缘, 2010, 171): 153163.

    SONG Xieyan, XIAO Jiafei, ZHU Dan, et al. New insights on the formation of magmatic sulfide deposits in magma conduit system[J]. Earth Science Frontiers, 2010, 171): 153163.

    [22]

    宋谢炎, 邓宇峰, 颉 炜, 等. 新疆黄山—镜儿泉铜镍成矿带岩浆作用与区域走滑构造的关系[J]. 地球科学与环境学报, 2018, 405): 505519. doi: 10.3969/j.issn.1672-6561.2018.05.002

    SONG Xieyan, DENG Yufeng, XIE Wei, et al. Magmatism of Huangshan-Jing’erquan Ni-Cu Ore Deposit Belt and Relationship with Regional Strike-slip Structure in Xinjiang, China[J]. Journal of Earth Sciences and Environment, 2018, 405): 505519. doi: 10.3969/j.issn.1672-6561.2018.05.002

    [23]

    宋谢炎, 邓宇峰, 颉 炜, 等. 新疆黄山-镜儿泉铜镍硫化物成矿带岩浆通道成矿特征及其找矿意义[J]. 矿床地质, 2022, 416): 11081123.

    SONG Xieyan, DENG Yufeng, XIE Wei, et al. Ore-forming processes in magma plumbing systems and significances for prospecting of Huangshan-Jingerquan Ni-Cu sulfide metallogenetic belt, Xinjiang, NW China[J]. Mineral Deposits, 2022, 416): 11081123.

    [24]

    石煜, 王玉往, 王京彬, 等. 东天山黄山东和黄山西铜镍硫化物矿床含矿超镁铁岩的成岩-成矿作用机制: 来自斜长石成分的约束[J]. 地球科学, 2022, 479): 32443257.

    SHI Yu, WANG Yuwang, WANG Jingbin, et al. Petrogenesis and Metallogenesis Mechanism of the Ore-Bearing Ultramafic Rocks from the Huangshandong and Huangshanxi Ni-Cu Sulfide Deposits, Eastern Tianshan: Constraints from Plagioclase Compositions[J]. Earth Science, 2022, 479): 32443257.

    [25]

    汤中立. 金川硫化铜镍矿床成矿模式[J]. 现代地质, 1990, 44): 5464.

    TANG Zhongli. Minerogenetic Model of the Jinchuan Copper and Nickel Sulfide Deposit[J]. Geoscience, 1990, 44): 5464.

    [26]

    汤中立. 超大型岩浆硫化物矿床的类型及地质对比意义[J]. 甘肃地质学报, 1992, (1): 24−47.

    TANG Zhongli. Classification and Geological Contrastable Significance of Super Large Magmatic Sulfide Deposits[J]. Acta Geological Gansu, 1992, (1): 24−47.

    [27]

    韦帅. 北天山黄山东铜镍硫化物矿床同化混染作用研究[D]. 合肥: 合肥工业大学, 2021.

    WEI Shuai. Assimilation and contamination of Huangshandong Cu-Ni sulfide deposit in Northern Tianshan[D]. Hefei: Hefei University of Technology, 2021.

    [28]

    王润民, 刘德权, 殷定泰. 新疆哈密土墩—黄山一带铜镍硫化物矿床成矿控制条件及找矿方向的研究[J]. 矿物岩石, 1987,(1): 1178.

    WANG Runmin, LIU Dequan, YIN Dingtai. The Conditions of Controlling Metallogeny of Cu, Ni Sulfide Ore Deposits and the Orientation of Finding Ore, Hami, Xinjiang, China[J]. Miner. Rocks, 1987,(1): 1178.

    [29]

    吴妍蓉, 周海, 赵国春, 等. 中亚造山带南蒙古地区石炭纪—二叠纪岩浆活动及其构造意义[J]. 西北地质, 2024, 573): 1128.

    WU Yanrong, ZHOU Hai, ZHAO Guochun, et al. Carboniferous-Permian Magmatism of Southern Mongolia, Central Asian Orogenic Belt and Its Tectonic Implications[J]. Northwestern Geology, 2024, 573): 1128.

    [30]

    袁峰, 张明明, 李晓晖, 等. 成矿预测: 从二维到三维[J]. 岩石学报, 2019, 3512): 38633874. doi: 10.18654/1000-0569/2019.12.18

    YUAN Feng, ZHANG mingMing, LI Xiaohui, et al. Prospectivity modeling: From two-dimension to three-dimension[J]. Acta Petrologica Sinica, 2019, 3512): 38633874. doi: 10.18654/1000-0569/2019.12.18

    [31]

    赵云, 杨永强, 柯君君. 含铜镍岩浆起源及硫饱和机制: 以新疆黄山南岩浆铜镍硫化物矿床Sr-Nd-Pb-S同位素和元素地球化学研究为例[J]. 岩石学报, 2016, 327): 20862098.

    ZHAO Yun, YANG Yongqiang, KE Junjun. Origin of Cu- and Ni-Bearing Magma and Sulfide Saturation Mechanism: A Case Study of Sr-Nd-Pb-S Isotopic Composition and Element Geochemistry on the Huangshannan Magmatic Ni-Cu Sulfide Deposit, Xinjiang[J]. Acta Petrologica Sinica, 2016, 327): 20862098.

    [32]

    张平松, 李洁, 李圣林, 等. 三维地质建模在煤矿地质可视化中的应用分析[J]. 科学技术与工程, 2022, 225): 17251740. doi: 10.3969/j.issn.1671-1815.2022.05.002

    ZHANG Pingsong, LI Jie, LI Shenglin, et al. Application Status of 3D Geological Modeling in The Development of Coal Mine Intelligence[J]. Science Technology And Engineering, 2022, 225): 17251740. doi: 10.3969/j.issn.1671-1815.2022.05.002

    [33]

    张夏林, 吴冲龙, 周 琦, 等. 基于勘查大数据和数据集市的锰矿床三维地质建模[J]. 地质科技通报, 2020, 394): 1220.

    ZHANG Xialin, WU Chonglong, ZHOU Qi, et al. Three-Dimensional Geological Modeling of Manganese Deposits Based on Exploration Big Data and Data Market[J]. Bulletin of Geological Science and Technology, 2020, 394): 1220.

    [34]

    竺国强, 杨树锋, 陈汉林. 黄山铜镍成矿带构造控岩控矿模式初探[J]. 矿物岩石, 1996, 161): 8693.

    ZHU Guoqiang, YANG Shufeng, CHEN Hanlin. Tectonic Stress Analysis of Huangshan Cu-Ni Metallogenic Belt and Discussion of Structral Controlling Rock and Ore Model[J]. Journal of Mineralogy and Petrology, 1996, 161): 8693.

    [35]

    张巨伟, 张广纯, 胡玉平, 等. 内蒙古欧布拉格金铜矿区综合地学信息三维找矿模型[J]. 矿产勘查, 2022, 137): 10251032.

    ZHANG Juwei, ZHANG Guangchun, HU Yuping, et al. Three-Dimensional Prospecting Model of Comprehensive Geo-Information of the Obrag Gold-Copper Deposit, Inner Mongolia[J]. Mineral Exploration, 2022, 137): 10251032.

    [36]

    张海迪, 陈博, 吕鹏瑞, 等. 东天山黄山西角闪辉长岩成因及其地质意义: 来自锆石U-Pb年代学及地球化学的证据[J]. 西北地质, 2021, 543): 5165.

    ZHANG Haidi, CHEN Bo, LV Pengrui, et al. The Petrogenesis and Geological Significance of the Hornblende Gabbro in Western Huangshan of East Tianshan: Evidence from Zircon U-Pb Chronology and Geochemistry[J]. Northwestern Geology, 2021, 543): 5165.

    [37]

    周涛发, 袁峰, 张达玉, 等. 新疆东天山觉罗塔格地区花岗岩类年代学、构造背景及其成矿作用研究[J]. 岩石学报, 2010, 262): 478502.

    ZHOU Taofa, YUAN Feng, ZHANG Dayu, et al. Geochronology, Tectonic Setting and Mineralization of Granitoids in Jueluotage Area, Eastern Tianshan, Xinjiang[J]. Acta Petrologica Sinica, 2010, 262): 478502.

    [38]

    朱光, 徐佑德, 刘国生, 等. 郯庐断裂带中-南段走滑构造特征与变形规律[J]. 地质科学, 2006, 412): 226241.

    ZHU Guang, XU Youde, LIU Guosheng, et al. Structural and Deformational Characteristics of Strike-Slippings Along the Middle-Southern Sector of the Tan-Lu Fault Zone[J]. Chinese Journal of Geology, 2006, 412): 226241.

    [39]

    赵鹏大, 张寿庭, 陈建平. 危机矿山可接替资源预测评价若干问题探讨[J]. 成都理工大学学报(自然科学版), 2004, 312): 111117.

    ZHAO Pengda, ZHANG Shouting, CHEN Jianping. Discussion on prediction and appraisement of replaceable resources of crisis mine[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2004, 312): 111117.

    [40]

    郑旭阳, 毛亚晶, 缪 君, 等. 造山带背景铜镍矿床蚀变过程与水的来源——东天山黄山南矿床氢氧同位素的指示[J]. 岩石学报, 2023, 394): 10751094. doi: 10.18654/1000-0569/2023.04.09

    ZHENG Xuyang, MAO Yajing, MIAO Jun, et al. Alteration process and water origin of Ni-Cu deposits in orogenic belts: Insights from H and O isotopes of the Huangshannan deposit in East Tianshan[J]. Acta Petrologica Sinica, 2023, 394): 10751094. doi: 10.18654/1000-0569/2023.04.09

    [41]

    Branquet Y, Gumiaux C, Sizaret S, et al. Synkinematic mafic/ultramafic sheeted intrusions: Emplacement mechanism and strain restoration of the Permian Huangshan Ni–Cu ore belt (Eastern Tianshan, NW China)[J]. Journal of Asian Earth Sciences, 2012, 56: 240257. doi: 10.1016/j.jseaes.2012.05.021

    [42]

    Barnes S J, Cruden A R, Arndt N T, et al. The mineral system approach applied to magmatic Ni-Cu-PGE sulphide deposits[J]. Ore Geology Reviews, 2016, 766): 296316.

    [43]

    Deng Y F, Song X Y, Chen L M, et al. Geochemistry of the Huangshandong Ni-Cu deposit in northwestern China: Implications for the formation of magmatic sulfide mineralization in orogenic belts[J]. Ore Geology Reviews, 2014, 56: 181198. doi: 10.1016/j.oregeorev.2013.08.012

    [44]

    Deng, Y F, Song X Y, Hollings P, et al. Lithological and geochemical constraints on the magma conduit systems of the Huangshan Ni-Cu sulfide deposit, NW China[J]. Miner Deposita, 2017, 52: 845862. doi: 10.1007/s00126-016-0703-7

    [45]

    Deng H, Zheng Y, Chen J, et al. Learning 3D Mineral Prospectivity from 3D Geological Models with Convolutional Neural Networks: Application to a Structure-controlled Hydrothermal Gold Deposit[J]. Computers & Geosciences, 2022, 161: 105074.

    [46]

    Li X H, Xue C, Chen Y F, et al. 3D Convolutional Neural Network-based 3D mineral prospectivity modeling for targeting concealed mineralization within Chating area, middle-lower Yangtze River metallogenic Belt, China[J]. Ore Geology Reviews, 2023, 1575): 105444.

    [47]

    Mao Y J, Qin K Z, Li C S, et al. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore-bearing mafic-ultramafic intrusion in the Central Asian Orogenic Belt, western China[J]. Lithos, 2010, 200: 111125.

    [48]

    Naldrett A J. World-class Cu-Ni-PGE deposits: key factors in their genesis[J]. Mineral Deposita, 1999, 34: 227–240.

    [49]

    Jahn B M, Wu F Y, Chen B. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic[J]. Episodes, 2000, 232): 8292. doi: 10.18814/epiiugs/2000/v23i2/001

    [50]

    Jahn B M. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[J]. Geological Society London Special Publications, 2004, 2261): 73100. doi: 10.1144/GSL.SP.2004.226.01.05

    [51]

    Falkenberg J J, Keith M, Haase K M, et al. Effects of fluid boiling on Au and volatile element enrichment in submarine arc-related hydrothermal systems[J], Geochimica et Cosmochimica Acta, 2021, 307, 105-132.

    [52]

    Su S, Jim M, Wang J, et al. Interfacial tension studies between Fe-Cu-Ni sulfide and halo-norilsk basalt slag system[J]. Science in China Series D: Earth Sciences, 2005, 48: 834839. doi: 10.1360/03yd0023

    [53]

    Sun T, Qian Z Z, Deng Y F, et al. PGE and isotope (Hf-Sr-Nd-Pb) constraints on the origin of the Huangshandong magmatic Ni-Cu sulfide deposit in the Central Asian Orogenic Belt, Northwestern China[J]. Economic Geology, 2013, 1088): 18491864. doi: 10.2113/econgeo.108.8.1849

    [54]

    Saumur B. M., Cruden A. R. Ingress of Magmatic Ni-Cu Sulphide Liquid into Surrounding Brittle Rocks: Physical & Structural Controls[J]. Ore Geology Reviews, 2017, 90: 439445.

    [55]

    Song X Y, Deng Y, Xie W, et al. Prolonged basaltic magmatism and short-lived magmatic sulfide mineralization in orogenic belts[J]. Lithos, 2021, 390–391: 106114.

    [56]

    Wang B, Cluzel D, Jahn B M, et al. Late paleozoic pre and syn-kinematic plutons of the Kangguer-Huangshan shear zone: inference on the tectonic evolution of the eastern Chinese North Tianshan[J]. American Journal of Science, 2014, 314: 4379. doi: 10.2475/01.2014.02

    [57]

    Wang G, Huang L. 3D geological modeling for mineral resource assessment of the Tongshan Cu deposit, Heilongjiang Province, China[J]. Geoscience Frontiers, 2012, 34): 483491. doi: 10.1016/j.gsf.2011.12.012

    [58]

    Xiao W J, Windley B F, Huang B C, et al. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia[J]. International Journal of Earth Sciences, 2009, 986): 11891217. doi: 10.1007/s00531-008-0407-z

    [59]

    Xie W, Lu Y, Chen L M, et al. Zircon Th/U ratios suggest a post-collision extensional setting for the Permian Ni-Cu sulfide deposits in the Eastern Tianshan, NW China[J]. Ore Geology Reviews, 2022, 144: 104837. doi: 10.1016/j.oregeorev.2022.104837

    [60]

    Zhou M F, Lesher C M, Yang Z X, et al. Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan District, eastern Xinjiang, northwest China;implications for the tectonic evolution of the Central Asian orogenic belt[J]. Chemical Geology, 2004, 2093−4): 233257. doi: 10.1016/j.chemgeo.2004.05.005

    [61]

    Zhang M, Li C, Fu P, et al. The Permian Huangshanxi Cu–Ni deposit in western China: intrusive–extrusive association, ore genesis, and exploration implications[J]. Miner Deposita, 2011, 46: 153170. doi: 10.1007/s00126-010-0318-3

  • 加载中

(13)

计量
  • 文章访问数:  18
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2024-12-26
修回日期:  2025-03-07
录用日期:  2025-03-11
刊出日期:  2025-08-20

目录