Current Status and Prospects of Geophysical Exploration of Magmatic Cu-Ni Sulfide Deposits in Northern Xinjiang Orogenic Belt
-
摘要:
新疆北部造山带内产出的岩浆型铜镍矿床是中国西北地区重要的铜镍资源基地。在岩浆铜镍硫化物矿床的地球物理勘查过程中,总结建立了高磁化率、高重力、高极化率、低电阻率“三高一低”的综合地球物理找矿标志,进而指导发现和评价了一批中大型矿床。随着重要成矿带地质工作程度不断提升,岩浆铜镍硫化物矿床的找矿方向逐渐转向深边部隐伏矿,对深部矿体的勘查需求明显增加。笔者结合新疆北部造山带环境岩浆铜镍硫化物矿床的地质特征,分析了区内近年来铜镍矿勘查中地球物理工作模式的现状及存在难点,针对性的探讨多项地球物理新技术应用前景,为岩浆铜镍硫化物矿床实现大深度、精细化探测目标提供新思路。
Abstract:The magmatic Cu-Ni sulfide deposits produced in the northern orogenic belt of Xinjiang are important Cu-Ni resource bases in northwest China. In the process of geophysical exploration of magmatic Cu-Ni sulfide deposits, comprehensive geophysical prospecting indicators of High magnetism, High weight, High polarizability, Low resistivity (Three High with One low) were summarized and established, which guided the discovery and evaluation of a number of medium and large deposits. With the continuous improvement of geological work in the mineralization zone, the exploration direction of magmatic Cu-Ni sulfide deposits has gradually shifted to concealed and deep orebodies, and the difficulty of exploration has significantly increased. Based on the geological characteristics of magmatic Cu-Ni sulfide deposits in northern Xinjiang, the author analyzed the current status and existing problems of geophysical exploration modes in the area in recent years, and explored the application prospects of multiple new geophysical technologies, providing new ideas for achieving deep and refined detection targets of magmatic Cu-Ni sulfide deposits.
-
-
图 8 新疆北部喀拉通克铜镍矿区地震勘探成果图(刘建勋等,2017)
Figure 8.
表 1 新疆北部主要岩浆铜镍硫化物矿床地质-地球物理特征一览表
Table 1. List of geological and geophysical characteristics of major magmatic Cu-Ni sulfide deposits in Northern Xinjiang
岩体名称 矿床规模 平面形态及面积(km2) 矿体赋存
位置围岩类型 勘探深度 地球物理特征 资料来源 喀拉通克 超大型 纺锤形;1.7 岩体中心或中下部 石炭系南明水组 > 1000 m航磁异常为孤立等轴状高磁异常,极大值150 nT(隐伏岩体幅值<100 nT);剩余重力异常0.1~0.2 mGal 秦克章等,2014 黄山东 大型 扁长菱形;2.8 岩体底部 中石炭系干墩组 > 1000 m航磁极大值211 nT,地磁极大值 1300 nT,剩余重力极大值1.15 mGal;含矿岩体表现为低阻高极化绍行来,2012 葫芦 中型 似葫芦状;0.75 岩体中下部和底部 下石炭统梧桐窝子组 <500 m 航磁极大值375 nT,地磁极大值 2224 nT,剩余重力极大值0.75 mGal;含矿岩体表现为低阻高极化夏明哲等,
2008图拉尔根 大型 透镜状;0.6 产于岩体
中部中—上石炭统火山碎屑岩 <700 m 航磁异常北东段> 1000 nT、向南东方向迅速减弱,地磁极大值2383 nT,剩余重力异常极大值1.1 mGal;含矿岩体表现为低阻高极化三金柱等, 2007 路北云海 中型 扁圆状;3.64 浅层矿;岩体底部 下石炭统小热泉子组 <400 m 航磁中为孤立的弱磁异常,地磁极大值约400 nT;路北区重力异常相对较低;含矿岩体表现为中阻高极化 李大海等,2018 白鑫滩 中型 纺锤状;1.5 岩体底部,呈似层状 中—下奥陶统恰干布拉克组 <500 m 呈现高磁、低重、高极化率、
低电阻特征韩建华等,2022 红石山 中型 菱形;5.3 岩体底部 下石炭统红柳园组 <500 m 地磁极大值 1356 nT,弱低重异常,含矿岩体表现为低阻高极化苏本勋等,2009 坡十 大型 椭圆状;3.2 岩体底部 古元古界敦煌岩群 <500 m 地磁异常极大值600 nT,强正磁异常套合重力低(−0.6 mGal)异常,激电显示低阻和较高极化率异常 秦克章等, 2012 启鑫 中型 带状;150 岩体底部 古元古界敦煌岩群 <500 m 航磁范围−55~195 nT,地磁−320~280 nT,弱重异常带,含矿岩体表现为低阻高
极化刘月高等, 2019 -
[1] 邓震, 孟贵祥, 汤贺军, 等. 浅覆盖区1: 5万基岩地质填图实践探索——以准噶尔北缘克什克涅绍喀尔(L45E009020)图幅为例[J]. 地球学报, 2019, 40(5): 651−660. doi: 10.3975/cagsb.2019.082302
DENG Zhen, MENG Guixiang, TANG Hejun, et al. 1: 50000 Bedrock Geological Mapping in Shallow Overburden Area: A Case Study of Kashkeneshakar Sheet (L45E009020) on the Northern Margin of Junggar Basin[J]. Acta Geoscientica Sinica,2019,40(5):651−660. doi: 10.3975/cagsb.2019.082302
[2] 邓振球. 新疆铜镍硫化物矿床地质-地球物理模式及找矿标志[J]. 新疆地质, 1990, 8(3): 193−204.
DENG Zhenqiu. Geological Geophysical Model and Guide of Prospecting of copper-nickel Sulphide Deposit in Xinjiang[J]. Xinjiang Geology,1990,8(3):193−204.
[3] 高晓峰, 隋清霖, 尤敏鑫, 等. 造山带岩浆铜镍硫化物矿床深部动力学机制探讨[J]. 西北地质, 2025, 58(3): 206−220. doi: 10.12401/j.nwg.2025012
GAO Xiaofeng,SUI Qinglin,YOU Minxin,et al. Study on Dynamic Mechanism of Magmatic Copper-Nickel Sulfide Deposits in Orogenic Belts[J]. Northwestern Geology,2025,58(3):206−220. doi: 10.12401/j.nwg.2025012
[4] 胡玉平, 张广纯, 高珍权, 等. 基于三维激电勘探的综合地学信息三维找矿模型[J]. 矿产勘查, 2021, 7(12): 1582−1586.
HU Yuping, ZHANG Guangchun, GAO Zhenquan, et al. Three Dimensional Ore Prospecting Model with Comprehensive Geoscientific Information Based on 3D IP Exploration[J]. Mineral Exploration,2021,7(12):1582−1586.
[5] 韩建华, 赵恒乐, 李鑫, 等. 东天山白鑫滩铜镍矿成矿特征及找矿启示[J]. 新疆地质, 2022, 40(1): 129−134.
HAN Jianhua, ZHAO Hengle, LI Xin, et al. Mineralization Characteristics of the Baixintan Copper-nickel Deposit in East Tianshan and Its Prospecting Enlightenment[J]. Xinjiang Geology,2022,40(1):129−134.
[6] 李大海, 田江涛. 东天山路北铜镍矿地质特征及岩石地球化学特征[J]. 新疆地质, 2018, 35(4): 423−428. doi: 10.3969/j.issn.1000-8845.2018.04.002
LI Dahai, TIAN Jiangtao. Geological Characteristics and Lithogeochemical Features of Lubei Cu-Ni deposit, Eastern Tianshan[J]. Xinjiang Geology,2018,35(4):423−428. doi: 10.3969/j.issn.1000-8845.2018.04.002
[7] 刘建勋, 周建勇, 徐明才, 等. 地震勘查技术在喀拉通克矿区的应用[J]. 物探与化探, 2017, 41(3): 437−444.
LIU Jianxun, ZHOU Jianyong, XU Mingcai, et al. The Application of Seismic Exploration Technology in the Kalatongke Orefield[J]. Geophysical and Geochemical Exploration,2017,41(3):437−444.
[8] 柳建新, 赵然, 郭振威. 电磁法在金属矿勘查中的研究进展[J]. 地球物理学进展, 2019, 34(1): 151−160. doi: 10.6038/pg2019CC0222
LIU Jianxin, ZHAO Ran, GUO Zhenwei. Research Progress of Electromagnetic Methods in Exploration of Metal Deposit[J]. Progress in Geophysics,2019,34(1):0151−0160. doi: 10.6038/pg2019CC0222
[9] 刘双, 胡祥云, 郭宁, 等. 无人机航磁测量技术综述[J]. 武汉大学学报(信息科学版), 2023, 48(6): 823−840.
LIU Shuang, HU Xiangyun, GUO Ning, et al. Overview on the UAV Aeromagnetic Survey Technology[J]. Geomatics and Information Science of Wuhan University,2023,48(6):823−840.
[10] 刘月高, 吕新彪, 阮班晓, 等. 新疆北山早二叠世岩浆型铜镍硫化物矿床综合信息勘查模式[J]. 矿床地质, 2019, 38(3): 644−666.
LIU Yuegao, LU Xinbiao, RUAN Banxiao, et al. A Comprehensive Information Exploration Model for Magmatic Cu-Ni Sulfide Deposits in Beishan, Xinjiang[J]. Mineral Deposits,2019,38(3):644−666.
[11] 米宏泽. 金属矿地下地球物理勘查技术的研究现状与发展思考[J]. 矿产勘查, 2019, 10(3): 601−605. doi: 10.3969/j.issn.1674-7801.2019.03.024
MI Hongze. Research Status and Development Thinking of Underground-geophysical Exploration Techniques for Metal Deposits[J]. Mineral Exploration,2019,10(3):601−605. doi: 10.3969/j.issn.1674-7801.2019.03.024
[12] 秦克章, 唐冬梅, 苏本勋, 等. 北疆二叠纪镁铁-超镁铁岩铜、镍矿床的构造背景、岩体类型、基本特征、相对剥蚀程度、含矿性评价标志及成矿潜力分析[J]. 西北地质, 2012, 45(4): 83−116. doi: 10.3969/j.issn.1009-6248.2012.04.009
QIN Kezhang, TANG Dongmei, SU Benxun, et al. The Tectonic Settingstyle, Basic Feature, Relative Erosion Degree, Ore-bearing Evaluation Sign, Potential Analysis of Mineralization of Cu-Ni-bearing Permian Maficultramafic Complexs, Northern Xinjiang[J]. Northwestern Geology,2012,45(4):83−116. doi: 10.3969/j.issn.1009-6248.2012.04.009
[13] 秦克章, 田野, 姚卓森, 等. 新疆喀拉通克铜镍矿田成矿条件、岩浆通道与成矿潜力分析[J]. 中国地质, 2014, 41(3): 912−935. doi: 10.3969/j.issn.1000-3657.2014.03.018
QIN Kezhang, TIAN Ye, YAO Zhuosen, et al. Metallogenetic Conditions, Magma Conduit and Exploration Potential of the Kalatongk Cu-Ni Orefield in Northern Xinjiang[J]. Geology in China,2014,41(3):912−935. doi: 10.3969/j.issn.1000-3657.2014.03.018
[14] 三金柱, 惠卫东, 秦克章, 等. 新疆哈密图拉尔根全岩矿化岩浆铜-镍-钴矿床地质特征及找矿方向[J]. 矿床地质, 2007, 26(3): 307−316. doi: 10.3969/j.issn.0258-7106.2007.03.007
SAN Jinzhu, HUI Weidong, QIN Kezhang, et al. Geological Characteristics of Tulargen Magmatic Cu-Ni-Co Deposit in Eastern Xinjiang and its Exploration Direction[J]. Mineral Deposits,2007,26(3):307−316. doi: 10.3969/j.issn.0258-7106.2007.03.007
[15] 绍行来. 东天山黄山—镜儿泉超镁铁岩带地球物理特征研究及找矿应用[D]. 北京: 中国地质大学(北京), 2012.
SHAO Xinglai. Research For Geophysical Characteristics And Prospecting Application On Huangshan-Jingerquan UltramaficComplex Belt In Eastern Tianshan of Xinjiang[D]. Beijing:China University of Geosciences (Beijing), 2012.
[16] 苏本勋, 秦克章, 孙赫, 等. 新疆北山地区红石山镁铁-超镁铁岩体的岩石矿物学特征: 对同化混染和结晶分异过程的启示[J]. 岩石学报, 2009, 25(4): 873−887.
SU Benxun, QIN Kezhang, SUN He, et al. Petrological and mineralogical characteristics of Xinjiang: Hongshishan mafic-ultramafic complex in Beishan area. Implications for assimilation and fractional crystallization[J]. Acta Petrologica Sinica.,2009,25(4):873−887.
[17] 索奎, 张贵宾, 梅岩辉, 等. 重磁三维反演伊犁盆地中部密度和磁性结构[J]. 地球物理学报, 2018, 61(8): 3410−3419. doi: 10.6038/cjg2018L0645
SUO Kui, ZHANG Guibin, MEI Yanhui, et al. Density and Magnetic Susceptibility Distribution of Central Yili Basin by Three-dimensional Inversion of Gravity and Magnetic data[J]. Chinese Journal Geophysics,2018,61(8):3410−3419. doi: 10.6038/cjg2018L0645
[18] 唐小平, 冯治汉, 刘生荣, 等. 西北地区区域地球物理调查工作现状与展望[J]. 西北地质, 2022, 55(3): 191−199.
TANG Xiaoping, FENG Zhihan, LIU Shengrong, et al. Present Situation and Prospect of Regional Geophysical Survey in Northwest China[J]. Northwestern Geology,2022,55(3):191−199.
[19] 汤中立, 闫海卿, 焦建刚, 等. 中国岩浆硫化物矿床新分类与小岩体成矿作用[J]. 矿床地质, 2006, 25(1): 1−9. doi: 10.3969/j.issn.0258-7106.2006.01.001
TANG Zhongli, YAN Haiqing, JIAO Jiangang, et al. New Classification of Magmatic Sulfide Deposits in China and Oreforming Processes of Small Intrusive bodies[J]. Mineral Deposits,2006,25(1):1−9. doi: 10.3969/j.issn.0258-7106.2006.01.001
[20] 汤中立, 钱壮志, 姜常义, 等. 岩浆硫化物矿床勘查研究的趋势与小岩体成矿系统[J]. 地球科学与环境学报, 2011, 33(1): 1−9. doi: 10.3969/j.issn.1672-6561.2011.01.001
TANG Zhongli, QIAN Zhuangzhi, JANG Changyi, et al. Trends of Research in Exploration of Magmatic Sulfide Deposits and Small Intrusions Metallogenic System[J]. Journal of Earth Sciences and Environment,2011,33(1):1−9. doi: 10.3969/j.issn.1672-6561.2011.01.001
[21] 王猛, 刘媛媛, 王大勇, 等. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206−213.
WANG Meng, LIU Yuanyuan, WANG Dayong, et al. Application effect Analysis of UAV Aeromagtic Survey Technology in Desert and Semidesert Regions[J]. Geophysical and Geochemical Exploration,2022,46(1):206−213.
[22] 王柯淇, 王治国, 高静怀, 等. 金属矿产资源探测的地震方法: 综述与展望[J]. 地球物理学进展, 2021, 36(4): 1607−629. doi: 10.6038/pg2021FF0024
WANG Keqi, WANG Zhiguo, GAO Jinghuai, et al. Seismc Methods for Exploraion of Metal Mineral Resources: Review and Proect[J]. Progress in Geophysics,2021,36(4):1607−629. doi: 10.6038/pg2021FF0024
[23] 武雪山, 黄松, 于昌明, 等. 旋翼无人机航磁测量系统在备战铁矿中的应用[J]. 新疆地质, 2021(39): 667−378.
WU Xueshan, HUANG Song, YU Changming, et al. Application of Rotorcraft UAV Aeromagnetic Measurement Systemin Beizhan Iron-depsit[J]. Xinjiang Geology,2021(39):667−378.
[24] 夏明哲, 姜常义, 钱壮志, 等. 新疆东天山葫芦岩体岩石学与地球化学研究[J]. 岩石学报, 2008, 24(12): 2749−2760.
XIA Mingzhe, JIANG Changyi, QIAN Zhuangzhi, et al. Geochemistry and petrogenesis for Hulu intrusion in East Tianshan, Xinjiang[J]. Acta Petrologica Sinica,2008,24(12):2749−2760.
[25] 肖骑彬, 蔡新平, 徐兴旺, 等. 浅层地震与MT联合技术在隐伏金属矿床定位预测中的应用--以新疆哈密图拉尔根铜镍矿区为例[J]. 矿床地质, 2005, 24(6): 676−683. doi: 10.3969/j.issn.0258-7106.2005.06.012
XIAO Qibin, CAI Xinping, XU Xingwang, et al. Application of Shallow Seismic Technology and Magnetotellurics to Location Prognosis of Concealed Metallic Deposits: Case Study of Tulargen Cu-Ni Mining Area, Hami, Xinjiang[J]. Mineral Deposits,2005,24(6):676−683. doi: 10.3969/j.issn.0258-7106.2005.06.012
[26] 薛国强, 周楠楠, 唐冬梅. 岩浆型铜镍硫化物矿床综合地球物理勘查技术: 以新疆喀拉通克为例[J]. 岩石学报, 2023, 39(4): 1117−1124. doi: 10.18654/1000-0569/2023.04.11
XUE Guoqiang, ZHOU Nannan, TANG Dongmei. Geophysical Technology for Exploration of Magmatic Ni-Cu Sulfide Deposits: Case Study in Kalatongke Deposit[J]. Acta Petrologica Sinica,2023,39(4):1117−1124. doi: 10.18654/1000-0569/2023.04.11
[27] 薛洪伟, 三金柱, 李凤明, 等. 2023年新疆地质勘查进展及2024年重点工作[J]. 新疆地质, 2024, 42(1): 1−6. doi: 10.3969/j.issn.1000-8845.2024.01.001
XUE Hongwei, SAN Jinzhu, LI Fengming, et al. Progress of Geological Exploration in Xinjiang in 2023 and Key Tasks for 2024[J]. Xinjiang Geology,2024,42(1):1−6. doi: 10.3969/j.issn.1000-8845.2024.01.001
[28] 姚卓森, 秦克章. 造山带中岩浆铜镍硫化物矿床的地球物理勘探: 现状、问题与展望[J]. 地球物理学进展, 2014, 29(6): 2800−2817. doi: 10.6038/pg20140649
YAO Zhuosen, QIN Kezhang. Geophysical Exploration for Magmatic Cu-Ni Sulfide Deposits Problems and Vistas[J]. Progress in Geophysics,2014,29(6):2800−2817. doi: 10.6038/pg20140649
[29] 严加永, 罗凡, 张昆, 等. 长江中下游成矿带岩浆岩体三维空间结构: 来自重磁三维反演的证据[J]. 地质科学, 2019, 54(3): 853−875. doi: 10.12017/dzkx.2019.049
YAN Jiayong, LUO Fan, ZHANG Kun, et al. Three-dimensional Spatial Structure of Plutons in the Middle and Lower Reaches of Yangtze River metallogenic Belt: Evidence from Three-dimensional Inversion of Gravity and Magnetic[J]. Chinese Journal of Geology,2019,54(3):853−875. doi: 10.12017/dzkx.2019.049
[30] 袁桂琴, 马冰, 张桂平. 国外矿产勘查井中物探技术应用新动态[J]. 地质科技情报, 2016, 35(1): 184−189.
YUAN Guiqin, MA Bing, ZHANG Guiping. New Dynamic of Borehole Geophysical Technology Application of Mineral Exploration Abroad[J]. Geological Science and Technology Information,2016,35(1):184−189.
[31] 张照伟, 钱兵, 王亚磊, 等. 中国西北地区岩浆铜镍矿床地质特点与找矿潜力[J]. 西北地质, 2021, 54(1): 82−99.
ZHANG Zhaowei, QIAN Bing, WANG Yalei, et al. Geological Characteristies and Prospecting Potential of Magmatic Ni-Cu SulfideDeposits in Northwest China[J]. Northwestern Geology,2021,54(1):82−99.
[32] 张照伟, 李文渊, 张江伟, 等. 新疆北部岩浆铜镍硫化物矿床地质分布特点与成矿背景探讨[J]. 西北地质, 2015, 48(3): 335−354. doi: 10.3969/j.issn.1009-6248.2015.03.036
ZHANG Zhaowei, LI Wenyuan, ZHANG Jiangwei, et al. Geological Distribution Characteristics and Metallogenic Background of Magmatic Ni-Cu Sulfide Deposits in the North Part of Xinjiang[J]. Northwestern Geology,2015,48(3):335−354. doi: 10.3969/j.issn.1009-6248.2015.03.036
[33] 张杰, 邓晓红, 郭鑫, 等. 地-井TEM在危机矿山深部找矿中的应用实例[J]. 物探与化探, 2013, 37(1): 30−34.
ZHANG Jie, DENG Xiaohong, GUO Xin, et al. Typical Cases of Applying Borehole TEM to Deep Prospecting in Crisis Mines[J]. [J]. Geophysical and Geochemical Exploration,2013,37(1):30−34.
[34] 庄道泽. 新疆负磁异常特征及其地质意义初探[J]. 地质论评, 2016, 11(62): 189−190.
ZHUANG Daoze. The Characteristics and Geological Exploration of Negative magnetic Anomaly of Xinjiang[J]. Geological Review,2016,11(62):189−190.
[35] 庄道泽, 孟贵祥, 陈蜀雁, 等. 成矿带1∶5万激发极化法普查的初步尝试——以东天山铜矿带1∶5万电法快速普查示范为例[J]. 地质通报, 2004, 23(7): 707−713. doi: 10.3969/j.issn.1671-2552.2004.07.013
ZHUANG Daoze, MENG Guixiang, CHEN Shuyan, et al. Preliminary Test of Induced Polarization Method in 1∶50000 Reconnaissance in a Metallogenic Belt-example from the Demonstration of 1: 50000 Rapid Electric Reconnaissancein the East Tianshan Copper Metallogenic Belt, Xinjiang[J]. Geological Bulletin of China,2004,23(7):707−713. doi: 10.3969/j.issn.1671-2552.2004.07.013
-