金川铜镍矿床多硫同位素和铁同位素特征及成因意义

段俊, TeukuAmrul Mahdi, 王宁, 徐刚, 房明举, 付易遥, 贾天河. 2025. 金川铜镍矿床多硫同位素和铁同位素特征及成因意义. 西北地质, 58(4): 56-68. doi: 10.12401/j.nwg.2025073
引用本文: 段俊, TeukuAmrul Mahdi, 王宁, 徐刚, 房明举, 付易遥, 贾天河. 2025. 金川铜镍矿床多硫同位素和铁同位素特征及成因意义. 西北地质, 58(4): 56-68. doi: 10.12401/j.nwg.2025073
DUAN Jun, Teuku Amrul Mahdi, WANG Ning, XU Gang, FANG Mingju, FU Yiyao, JIA Tianhe. 2025. Characteristics and Genetic Implications of Multiple Sulfur and Iron Isotopes in the Jinchuan Cu-Ni Deposit. Northwestern Geology, 58(4): 56-68. doi: 10.12401/j.nwg.2025073
Citation: DUAN Jun, Teuku Amrul Mahdi, WANG Ning, XU Gang, FANG Mingju, FU Yiyao, JIA Tianhe. 2025. Characteristics and Genetic Implications of Multiple Sulfur and Iron Isotopes in the Jinchuan Cu-Ni Deposit. Northwestern Geology, 58(4): 56-68. doi: 10.12401/j.nwg.2025073

金川铜镍矿床多硫同位素和铁同位素特征及成因意义

  • 基金项目: 国家自然科学基金项目(U2444203、41802081、42473027),陕西省自然科学基础研究计划项目(2023-JC-YB-224),长安大学创新创业训练计划项目(S202410710300)联合资助。
详细信息
    作者简介: 段俊(1986−),男,副教授,博士,主要从事矿床学的研究与教学。E−mail:duanjun108@163.com
  • 中图分类号: P618.63

Characteristics and Genetic Implications of Multiple Sulfur and Iron Isotopes in the Jinchuan Cu-Ni Deposit

  • 金川铜镍矿床是中国最大的岩浆铜镍硫化物矿床。前人研究表明,金川矿床成矿过程存在较高程度的同化混染作用,但同化混染物质的源区以及促使岩浆中硫化物发生熔离的机制一直存在争议。笔者通过多硫同位素(δ34S、Δ33S)和Fe同位素(δ56Fe)联合示踪金川矿床成矿过程可能混染的地壳物质,尤其是太古宙沉积岩中S对金川矿床中硫化物熔离作用的影响。金川矿床Ⅰ、Ⅱ矿区中硫化物Δ33S值为−0.07‰~0.22‰,超出了幔源岩浆Δ33S值的参考值(−0.06‰~0.06‰),且不同于矿床围岩混合花岗岩中黄铁矿Δ33S值(−0.04‰~−0.08‰),表明金川成矿岩浆同化混染作用应发生在深部,与其直接围岩无关。Ⅰ、Ⅱ矿区中磁黄铁矿δ56Fe值为−1.07‰~−0.33‰,计算表明与硫化物熔体处于平衡的母岩浆δ56Fe值为−0.7‰,远低于正常的幔源玄武质岩浆范围。此外,正Δ33S值的矿石中磁黄铁矿通常具有很低的δ56Fe值,两者具有明显的负相关关系,表明金川母岩浆中硫化物熔离可能是由于同化混染太古宙沉积岩中黄铁矿所致。

  • 加载中
  • 图 1  金川铜镍矿床大地构造位置(a)、金川矿床地质简图 (b)、混合花岗岩中黄铁矿(c)和金川矿床I、Ⅱ矿区纵向投影图(d)

    Figure 1. 

    图 2  金川硫化物矿石中金属硫化物矿物镜下照片

    Figure 2. 

    图 3  金川铜镍矿床Ⅰ、Ⅱ矿区多硫同位素和铁同位素值分布图

    Figure 3. 

    图 4  金川铜镍矿床中硫化物δ34S-Δ33S值相关图(a)和δ56Fe值分布图(b)

    Figure 4. 

    图 5  金川铜镍矿床中磁黄铁矿δ56Fe值与硫化物Δ33S值相关图

    Figure 5. 

    表 1  金川铜镍矿床中硫化物多硫同位素与Fe同位素值

    Table 1.  Sulfur isotope and iron isotope values of sulfides in the Jinchuan Ni-Cu deposit

    样品编号测试对象矿区深度(m)δ34S(‰ VCDT)errorδ33S(‰VCDT)errorΔ33S(‰)δ56Feerror
    JC9-1Pn+Po+CpII矿区9行9580.000.010−0.040.016−0.04
    JC9-2Pn+Po+CpII矿区9行9580.020.0130.020.0160.00
    JC9-3Pn+Po+CpII矿区9行9580.340.0080.160.010−0.01−0.420.046
    JC9-4Pn+Po+CpII矿区9行9580.300.0080.120.016−0.04
    11-4Pn+Po+CpII矿区11行9780.730.0220.330.026−0.05
    1078-2Pn+Po+CpII矿区13行1078−0.320.012−0.760.0220.07−0.890.049
    1078-6Pn+Po+CpII矿区13行10780.690.0120.340.024−0.01
    JC13-1Pn+Po+CpII矿区13行10420.830.0070.450.0220.03
    JC13-2Pn+Po+CpII矿区13行10420.140.0200.060.026−0.02
    JC13-3Pn+Po+CpII矿区13行10420.390.0090.150.007−0.05−0.350.020
    JC14-1Pn+Po+CpII矿区13行10420.100.0060.020.016−0.03
    JC14-2Pn+Po+CpII矿区13行10420.800.0110.410.0200.00
    JC14-3Pn+Po+CpII矿区13行1042−0.330.008−0.200.013−0.03
    JC14-5Pn+Po+CpII矿区13行1042−0.090.008−0.100.025−0.05
    050713-5Pn+Po+CpII矿区14行1042−0.130.007−0.240.0110.00
    JC25-2Pn+Po+CpII矿区25行10550.710.0090.270.012−0.09
    JC25-4Pn+Po+CpII矿区25行1055−0.080.012−0.090.010−0.05
    JC25-5Pn+Po+CpII矿区25行10550.920.0070.440.024−0.04
    JC25-7Pn+Po+CpII矿区25行10550.440.0100.190.012−0.04
    JC25-9Pn+Po+CpII矿区25行10550.910.0160.420.020−0.05
    R25-2Pn+Po+CpII矿区25行1160−0.250.010−0.120.0110.01
    R25-1Pn+Po+CpII矿区25行1160−0.250.007−0.520.0170.02
    R25-3Pn+Po+CpII矿区25行1160−0.360.007−1.120.0120.22−1.060.052
    R25-7Pn+Po+CpII矿区25行1160−0.570.014−1.120.0110.00
    5-5Pn+Po+CpI矿区5行1100−0.190.011−0.150.015−0.05
    I-7-2Pn+Po+CpI矿区7行11000.850.0070.410.019−0.03
    I-7-3Pn+Po+CpI矿区7行11000.110.0060.020.017−0.04−0.430.028
    I-7-4Pn+Po+CpI矿区7行11000.680.0110.310.009−0.04−0.490.107
    I-7-5Pn+Po+CpI矿区7行1100−0.080.010−0.080.018−0.04
    I-7-6Pn+Po+CpI矿区7行11001.530.0060.750.015−0.04
    I-7-7Pn+Po+CpI矿区7行11000.340.0070.140.015−0.03
    I-7-8Pn+Po+CpI矿区7行11000.000.004−0.050.016−0.05
    I-7-9Pn+Po+CpI矿区7行1100−0.060.013−0.060.019−0.03
    I-7-10Pn+Po+CpI矿区7行11000.840.0160.390.027−0.04
    16-E3Pn+Po+CpI矿区7行12200.350.0110.380.0200.15−1.070.043
    050712-4Pn+Po+CpI矿区6行1220−0.490.010−1.190.0110.12−0.660.017
    I-20-1Pn+Po+CpI矿区20行12280.000.009−0.040.014−0.04−0.330.060
    I-20-2Pn+Po+CpI矿区20行12280.280.0090.110.020−0.04
    I-20-4Pn+Po+CpI矿区20行12280.220.0040.080.009−0.03
    L22-2Pn+Po+CpI矿区22行12600.760.0040.330.012−0.06
    L22-4Pn+Po+CpI矿区22行1260−0.190.006−0.170.015−0.07
    JC120Py围岩3.600.0101.800.017−0.05
    JC128Py围岩1.940.0090.930.015−0.06
    JC130Py围岩6.470.0153.260.018−0.07
    JC138Py围岩1.930.0150.910.024−0.08
    JC145Py围岩11.230.0095.700.015−0.06
    JC195Py围岩2.670.0061.340.011−0.04
    下载: 导出CSV
  • [1]

    宫江华, 张建新, 于胜尧, 等. 西阿拉善地块~2.5 Ga TTG岩石及地质意义[J]. 科学通报, 2012, 57(Z2): 2715−2727.

    GONG Jianghua,ZHANG Jianxin,YU Shengyao,et al. ~2.5 Ga TTG rocks in the western Alxa Block and their geological implications[J]. Chinese Science Bulletin,2012,57(Z2):2715−2727.

    [2]

    牛鹏飞, 曲军峰, 张进, 等. 内蒙古狼山地区叠布斯格岩群锆石U-Pb年龄, Hf同位素特征及其对阿拉善地块构造演化的制约[J]. 地质通报, 2022, 41(5): 754−773.

    NIU Pengfei, QU Junfeng, ZHANG Jin, et al. Zircon U–Pb age and Hf isotopic characteristics of the Diebusige Complex in Langshan area, Inner Mongolia, and its constraints on the tectonic evolution of the Aixa Block[J]. Geological Bulletin of China,2022,41(5):754−773.

    [3]

    焦建刚, 汤中立, 闫海卿, 等. 金川铜镍硫化物矿床的岩浆质量平衡与成矿过程[J]. 矿床地质, 2012b, 31(6): 1135−1148.

    JIAO Jiangang, TANG Zhongli, YAN Haiqing, et al. Magmatic Mass Balance and Mineralization Process of the Jinchuan Cu-Ni Sulfide Deposit[J]. Mineral Deposits,2012b,31(6):1135−1148.

    [4]

    焦建刚, 汤中立, 闫海卿, 等. 金川铜镍硫化物矿床中富铜矿石铂族元素特征及矿床成因[J]. 西北地质, 2012a, 45(4): 242−253.

    JIAO Jiangang, TANG Zhongli, YAN Haiqing, et al. PGE Characteristics of Cu-rich Ores in the Jinchuan Cu-Ni Sulfide Deposit and Its Genesis[J]. Northwestern Geology,2012a,45(4):242−253.

    [5]

    邱坦, 汤庆艳, 杨皓辰, 等. 铁同位素分馏机理以及在镁铁-超镁铁质岩浆作用和成矿作用中的应用[J]. 岩石矿物学杂志, 2024, 43(4): 1034−1051.

    QIU Tan, TANG Qingyan, YANG Haocheng, et al. Fractionation mechanism of iron isotope and its application in mafie. ultramafic magmatism and metallogenesis[J]. Acta Petrologica et Mineralogica,2024,43(4):1034−1051.

    [6]

    汤中立, 李文渊. 金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M]. 北京: 地质出版社,1995.

    TANG Zhongli, LI Wenyuan. Metallogenic Model and Geological Comparison of the Jinchuan Cu-Ni (Pt-bearing) Sulfide Deposit[M]. Beijing: Geological Publishing House,1995.

    [7]

    王泸文, 汤中立, 闫海卿, 等. 金川铜镍硫化物矿床1号矿体矿石成因研究[J]. 西北地质, 2012, 45(4): 334−345.

    WANG Luwen, TANG Zhongli, YAN Haiqing, et al. Ore Genesis of Ore Body #1 of the Jinchuan Ni-Cu Sulfide Deposit[J]. Northwestern Geology,2012,45(4):334−345.

    [8]

    王亚磊, 李文渊, 张照伟, 等. 金川铜镍硫化物矿床成矿物质深部预富集过程探讨[J]. 西北地质, 2012, 45(4): 321−333.

    WANG Yalei, LI Wenyuan, ZHANG Zhaowei, et al. The Preconcentration Process of Metal Mineral in the Deep Mgama Chamber of Jinchuan Ni-Cu Suphide Deposit[J]. Northwestern Geology,2012,45(4):321−333.

    [9]

    王亚磊, 李文渊, 林艳海, 等. 金川超大型铜镍矿床钴的赋存状态与富集过程研究[J]. 西北地质, 2023, 56(2): 133−150.

    WANG Yalei, LI Wenyuan, LIN Yanhai, et al. Study on the Occurrence State and Enrichment Process of Cobalt in Jinchuan Giant Magmatic Ni−Cu Sulfide Deposit[J]. Northwestern Geology,2023,56(2):133−150.

    [10]

    修群业, 于海峰, 李铨, 等. 龙首山岩群成岩时代探讨[J]. 地质学报, 2004, 78(3): 366−373.

    XIU Qunye, YU Haifeng, LI Quan, et al. Discussion on the Diagenetic Age of the Longshoushan Rock Group[J]. Acta Geologica Sinica,2004,78(3):366−373.

    [11]

    杨刚, 杜安道, 卢记仁, 等. 金川镍-铜-铂矿床块状硫化物矿石的Re-Os(ICP-MS)定年[J]. 中国科学: D辑, 2005, 35(3): 241−245.

    YANG Gang, DU Andao, LU Jiren, et al. Re-Os (ICP-MS) Dating of Massive Sulfide Ores from the Jinchuan Ni-Cu-PGE Deposit[J]. Science in China Series D: Earth Sciences,2005,35(3):241−245.

    [12]

    张照伟, 钱兵, 王亚磊, 等. 中国西北地区岩浆铜镍矿床地质特点与找矿潜力[J]. 西北地质, 2021, 54(1): 82-99.

    ZHANG Zhaowei, QIAN Bing, WANG Yalei, et al. Geological Characteristics and Prospecting Potential of Magmatic Ni-Cu Sulfide Deposits in Northwest China[J]. Northwestern Geology, 2021, 54(1): 82-99.

    [13]

    Archer C, Vance D. Coupled Fe and S isotope evidence for Archean microbial Fe (III) and sulfate reduction[J]. Geology,2006,34(3):153−156. doi: 10.1130/G22067.1

    [14]

    Bekker A, Barley M E, Fiorentini M L, et al. Atmospheric sulfur in Archean komatiite-hosted nickel deposits[J]. Science,2009,326(5956):1086−1089. doi: 10.1126/science.1177742

    [15]

    Benson E K, Ripley E M, Li C, et al. Multiple S isotopes and S isotope heterogeneity at the East Eagle Ni-Cu-platinum group element deposit, northern Michigan[J]. Economic Geology,2020,115(3):527−541. doi: 10.5382/econgeo.4707

    [16]

    Bilenker L D, Weis D, Scoates J S, et al. The application of stable Fe isotopes to magmatic sulfide systems: Constraints on the Fe isotope composition of magmatic pyrrhotite[J]. Economic Geology,2018,113(5):1181−1192. doi: 10.5382/econgeo.2018.4586

    [17]

    Brzozowski M J, Good D J, Wu C, et al. Iron isotope fractionation during sulfide liquid evolution in Cu–PGE mineralization of the Eastern Gabbro, Coldwell Complex, Canada[J]. Chemical Geology,2021,576:120282. doi: 10.1016/j.chemgeo.2021.120282

    [18]

    Butler I B, Archer C, Vance D, et al. Fe isotope fractionation on FeS formation in ambient aqueous solution[J]. Earth and Planetary Science Letters,2005,236(1-2):430−442. doi: 10.1016/j.jpgl.2005.05.022

    [19]

    Chai G, Naldrett A J. Characteristics of Ni-Cu-PGE mineralization and genesis of the Jinchuan deposit, northwest China[J]. Economic Geology,1992a,87(6):1475−1495. doi: 10.2113/gsecongeo.87.6.1475

    [20]

    Chai G, Naldrett A J. The Jinchuan ultramafic intrusion: cumulate of a high-Mg basaltic magma[J]. Journal of Petrology,1992b,33(2):277−303. doi: 10.1093/petrology/33.2.277

    [21]

    Chen L M, Song X Y, Zhu X K, et al. Iron isotope fractionation during crystallization and sub-solidus re-equilibration: Constraints from the Baima mafic layered intrusion, SW China[J]. Chemical Geology,2014,380:97−109. doi: 10.1016/j.chemgeo.2014.04.020

    [22]

    Craddock P R, Dauphas N. Iron isotopic compositions of geological reference materials and chondrites[J]. Geostandards and Geoanalytical Research,2011,35(1):101−123. doi: 10.1111/j.1751-908X.2010.00085.x

    [23]

    Dauphas N, Rouxel O. Mass Spectrometry and Natural Variations of Iron Isotopes[J]. Mass spectrometry reviews,2006,25(4):515−550. doi: 10.1002/mas.20078

    [24]

    Ding T, Valkiers S, Kipphardt H, et al. Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur[J]. Geochimica et Cosmochimica Acta,2001,65(15):2433−2437. doi: 10.1016/S0016-7037(01)00611-1

    [25]

    Ding X, Ripley E M, Li C. PGE geochemistry of the Eagle Ni–Cu–(PGE) deposit, Upper Michigan: constraints on ore genesis in a dynamic magma conduit[J]. Mineralium Deposita,2012a,47:89−104. doi: 10.1007/s00126-011-0350-y

    [26]

    Ding X, Ripley E M, Shirey S B, et al. Os, Nd, O and S isotope constraints on country rock contamination in the conduit-related Eagle Cu–Ni–(PGE) deposit, Midcontinent Rift System, Upper Michigan[J]. Geochimica et Cosmochimica Acta,2012b,89:10−30. doi: 10.1016/j.gca.2012.04.029

    [27]

    Ding X, Ripley E M, Wang W, et al. Iron isotope fractionation during sulfide liquid segregation and crystallization at the Lengshuiqing Ni-Cu magmatic sulfide deposit, SW China[J]. Geochimica et Cosmochimica Acta,2019,261:327−341. doi: 10.1016/j.gca.2019.07.015

    [28]

    Ding X, Ripley E M, Underwood B S, et al. Behavior of Mg and CO isotopes during mafic magma-carbonate interaction at the Jinchuan Ni-Cu deposit, North China Craton[J]. Chemical Geology,2021,562:120044. doi: 10.1016/j.chemgeo.2020.120044

    [29]

    Duan J, Li C, Qian Z, et al. Multiple S isotopes, zircon Hf isotopes, whole-rock Sr-Nd isotopes, and spatial variations of PGE tenors in the Jinchuan Ni-Cu-PGE deposit, NW China[J]. Mineralium Deposita,2016,51:557−574. doi: 10.1007/s00126-015-0626-8

    [30]

    Farquhar J, Wing B A, McKeegan K D, et al. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth[J]. Science,2002,298(5602):2369−2372. doi: 10.1126/science.1078617

    [31]

    Farquhar J, Wing B A. Multiple sulfur isotopes and the evolution of the atmosphere[J]. Earth and Planetary Science Letters,2003,213(1-2):1−13. doi: 10.1016/S0012-821X(03)00296-6

    [32]

    Fiorentini M L, Bekker A, Rouxel O, et al. Multiple sulfur and iron isotope composition of magmatic Ni-Cu-(PGE) sulfide mineralization from eastern Botswana[J]. Economic Geology,2012,107(1):105−116. doi: 10.2113/econgeo.107.1.105

    [33]

    Grinenko L I. Sources of sulfur of the nickeliferous and barren gabbro-dolerite intrusions of the northwest Siberian platform[J]. International Geology Review,1985,27(6):695−708. doi: 10.1080/00206818509466457

    [34]

    Guilbaud R, Butler I B, Ellam R M, et al. Experimental determination of the equilibrium Fe isotope fractionation between Feaq2+ and FeSm (mackinawite) at 25 and 2° C[J]. Geochimica et Cosmochimica Acta,2011,75(10):2721−2734. doi: 10.1016/j.gca.2011.02.023

    [35]

    Hiebert R S, Bekker A, Wing B A, et al. The role of paragneiss assimilation in the origin of the Voisey’s Bay Ni-Cu sulfide deposit, Labrador: multiple S and Fe isotope evidence[J]. Economic Geology,2013,108(6):1459−1469. doi: 10.2113/econgeo.108.6.1459

    [36]

    Hofmann A, Bekker A, Rouxel O, et al. Multiple sulphur and iron isotope composition of detrital pyrite in Archaean sedimentary rocks: a new tool for provenance analysis[J]. Earth and Planetary Science Letters,2009,286(3-4):436−445. doi: 10.1016/j.jpgl.2009.07.008

    [37]

    Huang F, Zhang Z, Lundstrom C C, et al. Iron and magnesium isotopic compositions of peridotite xenoliths from Eastern China[J]. Geochimica et Cosmochimica Acta,2011,75(12):3318−3334. doi: 10.1016/j.gca.2011.03.036

    [38]

    Johnson C M, Beard B L, Beukes N J, et al. Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton[J]. Contributions to Mineralogy and Petrology,2003,144:523−547. doi: 10.1007/s00410-002-0418-x

    [39]

    Labidi J, Cartigny P, Hamelin C, et al. Sulfur isotope budget (32S, 33S, 34S and 36S) in Pacific–Antarctic ridge basalts: A record of mantle source heterogeneity and hydrothermal sulfide assimilation[J]. Geochimica et Cosmochimica Acta,2014,133:47−67. doi: 10.1016/j.gca.2014.02.023

    [40]

    Labidi J, Cartigny P, Jackson M G. Multiple sulfur isotope composition of oxidized Samoan melts and the implications of a sulfur isotope ‘mantle array’in chemical geodynamics[J]. Earth and Planetary Science Letters,2015,417:28−39. doi: 10.1016/j.jpgl.2015.02.004

    [41]

    Laflamme C, Martin L, Jeon H, et al. In situ multiple sulfur isotope analysis by SIMS of pyrite, chalcopyrite, pyrrhotite, and pentlandite to refine magmatic ore genetic models[J]. Chemical Geology,2016,444:1−15. doi: 10.1016/j.chemgeo.2016.09.032

    [42]

    Laflamme C, Jamieson J W, Fiorentini M L, et al. Investigating sulfur pathways through the lithosphere by tracing mass independent fractionation of sulfur to the Lady Bountiful orogenic gold deposit, Yilgarn Craton[J]. Gondwana Research,2018,58:27−38. doi: 10.1016/j.gr.2018.02.005

    [43]

    Lehmann J, Arndt N, Windley B, et al. Field relationships and geochemical constraints on the emplacement of the Jinchuan intrusion and its Ni-Cu-PGE sulfide deposit, Gansu, China[J]. Economic Geology,2007,102(1):75−94. doi: 10.2113/gsecongeo.102.1.75

    [44]

    Li C, Ripley E M, Naldrett A J. Compositional variations of olivine and sulfur isotopes in the Noril’sk and Talnakh intrusions, Siberia: Implications for ore-forming processes in dynamic magma conduits[J]. Economic Geology,2003,98(1):69−86.

    [45]

    Li C, Xu Z, De Waal S A, et al. Compositional variations of olivine from the Jinchuan Ni–Cu sulfide deposit, western China: implications for ore genesis[J]. Mineralium deposita,2004,39:159−172. doi: 10.1007/s00126-003-0389-5

    [46]

    Li C, Ripley E M. The giant Jinchuan Ni-Cu-(PGE) deposit: Tectonic setting, magma evolution, ore genesis, and exploration implications[J]. 2011.

    [47]

    Liu J, Yin C, Zhang J, et al. Tectonic evolution of the Alxa Block and its affinity: Evidence from the U-Pb geochronology and Lu-Hf isotopes of detrital zircons from the Longshoushan Belt[J]. Precambrian Research,2020,344:105733. doi: 10.1016/j.precamres.2020.105733

    [48]

    Mann J L, Vocke Jr R D, Kelly W R. Revised δ34S reference values for IAEA sulfur isotope reference materials S‐2 and S‐3[J]. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up‐to‐the‐Minute Research in Mass Spectrometry,2009,23(8):1116−1124.

    [49]

    Mao Y J, Barnes S J, Duan J, et al. Morphology and particle size distribution of olivines and sulphides in the Jinchuan Ni–Cu sulphide deposit: evidence for sulphide percolation in a crystal mush[J]. Journal of Petrology,2018,59(9):1701−1730.

    [50]

    Marin-Carbonne J, Rollion-Bard C, Bekker A, et al. Coupled Fe and S isotope variations in pyrite nodules from Archean shale[J]. Earth and Planetary Science Letters,2014,392:67−79. doi: 10.1016/j.jpgl.2014.02.009

    [51]

    Maynard J B, Sutton S J, Rumble III D, et al. Mass-independently fractionated sulfur in Archean paleosols: A large reservoir of negative Δ33S anomaly on the early Earth[J]. Chemical Geology,2013,362:74−81. doi: 10.1016/j.chemgeo.2013.09.011

    [52]

    Ono S, Eigenbrode J L, Pavlov A A, et al. New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia[J]. Earth and Planetary Science Letters,2003,213(1-2):15−30. doi: 10.1016/S0012-821X(03)00295-4

    [53]

    Ono S, Shanks ⅡI W C, Rouxel O J, et al. S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides[J]. Geochimica et Cosmochimica Acta,2007,71(5):1170−1182. doi: 10.1016/j.gca.2006.11.017

    [54]

    Ono S, Kaufman A J, Farquhar J, et al. Lithofacies control on multiple-sulfur isotope records and Neoarchean sulfur cycles[J]. Precambrian Research,2009,169(1-4):58−67. doi: 10.1016/j.precamres.2008.10.013

    [55]

    Penniston-Dorland S C, Mathez E A, Wing B A, et al. Multiple sulfur isotope evidence for surface-derived sulfur in the Bushveld Complex[J]. Earth and Planetary Science Letters,2012,337:236−242.

    [56]

    Planavsky N, Rouxel O J, Bekker A, et al. Iron isotope composition of some Archean and Proterozoic iron formations[J]. Geochimica et Cosmochimica Acta,2012,80:158−169. doi: 10.1016/j.gca.2011.12.001

    [57]

    Ripley E M, Li C. Sulfur isotope exchange and metal enrichment in the formation of magmatic Cu-Ni-(PGE) deposits[J]. Economic Geology,2003,98(3):635−641. doi: 10.2113/gsecongeo.98.3.635

    [58]

    Ripley E M, Sarkar A, Li C. Mineralogic and stable isotope studies of hydrothermal alteration at the Jinchuan Ni-Cu deposit, China[J]. Economic Geology,2005,100(7):1349−1361. doi: 10.2113/gsecongeo.100.7.1349

    [59]

    Ripley E M, Chusi L I. Applications of stable and radiogenic isotopes to magmatic Cu-Ni-PGE deposits: Examples and cautions[J]. Earth Science Frontiers,2007,14(5):124−131. doi: 10.1016/S1872-5791(07)60041-4

    [60]

    Ripley E M, Wernette B W, Ayre A, et al. Multiple S isotope studies of the Stillwater Complex and country rocks: An assessment of the role of crustal S in the origin of PGE enrichment found in the JM Reef and related rocks[J]. Geochimica et Cosmochimica Acta,2017,214:226−245. doi: 10.1016/j.gca.2017.07.041

    [61]

    Robertson J, Ripley E M, Barnes S J, et al. Sulfur liberation from country rocks and incorporation in mafic magmas[J]. Economic Geology,2015,110(4):1111−1123. doi: 10.2113/econgeo.110.4.1111

    [62]

    Rouxel O J, Bekker A, Edwards K J. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state[J]. Science,2005,307(5712):1088−1091. doi: 10.1126/science.1105692

    [63]

    Schuessler J A, Schoenberg R, Behrens H, et al. The experimental calibration of the iron isotope fractionation factor between pyrrhotite and peralkaline rhyolitic melt[J]. Geochimica et Cosmochimica Acta,2007,71(2):417−433. doi: 10.1016/j.gca.2006.09.012

    [64]

    Shahar A, Young E D, Manning C E. Equilibrium high-temperature Fe isotope fractionation between fayalite and magnetite: an experimental calibration[J]. Earth and Planetary Science Letters,2008,268(3-4):330−338. doi: 10.1016/j.jpgl.2008.01.026

    [65]

    Song X Y, Keays R R, Zhou M F, et al. Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China[J]. Geochimica et Cosmochimica Acta,2009,73(2):404−424. doi: 10.1016/j.gca.2008.10.029

    [66]

    Sossi P A, Foden J D, Halverson G P. Redox-controlled iron isotope fractionation during magmatic differentiation: an example from the Red Hill intrusion, S. Tasmania[J]. Contributions to Mineralogy and Petrology,2012,164(5):757−772. doi: 10.1007/s00410-012-0769-x

    [67]

    Tang Q, Bao J, Dang Y, et al. Mg–Sr–Nd isotopic constraints on the genesis of the giant Jinchuan Ni–Cu–(PGE) sulfide deposit, NW China[J]. Earth and Planetary Science Letters,2018,502:221−230. doi: 10.1016/j.jpgl.2018.09.008

    [68]

    Teng F Z, Dauphas N, Helz R T. Iron isotope fractionation during magmatic differentiation in Kilauea Iki lava lake[J]. Science,2008,320(5883):1620−1622. doi: 10.1126/science.1157166

    [69]

    Teng F Z, Dauphas N, Huang S, et al. Iron isotopic systematics of oceanic basalts[J]. Geochimica et Cosmochimica Acta,2013,107:12−26. doi: 10.1016/j.gca.2012.12.027

    [70]

    Ueno Y, Ono S, Rumble D, et al. Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser Formation: New evidence for microbial sulfate reduction in the early Archean[J]. Geochimica et Cosmochimica Acta,2008,72(23):5675−5691. doi: 10.1016/j.gca.2008.08.026

    [71]

    Wang P, Niu Y, Sun P, et al. Iron isotope compositions of coexisting sulfide and silicate minerals in sudbury-type ores from the Jinchuan Ni-Cu sulfide deposit: a perspective on possible core-mantle iron isotope fractionation[J]. Minerals,2021,11(5):464. doi: 10.3390/min11050464

    [72]

    Weyer S. What drives iron isotope fractionation in magma?[J]. Science,2008,320(5883):1600−1601. doi: 10.1126/science.1160204

    [73]

    Williams H M, Peslier A H, McCammon C, et al. Systematic iron isotope variations in mantle rocks and minerals: the effects of partial melting and oxygen fugacity[J]. Earth and Planetary Science Letters,2005,235(1-2):435−452. doi: 10.1016/j.jpgl.2005.04.020

    [74]

    Xue S, Wang Q, Wang Y, et al. The roles of various types of crustal contamination in the genesis of the Jinchuan magmatic Ni-Cu-PGE deposit: New mineralogical and CS-Sr-Nd isotope constraints[J]. Economic Geology,2023,118(8):1795−1812. doi: 10.5382/econgeo.5017

    [75]

    Yamaguchi K E, Johnson C M, Beard B L, et al. Isotopic evidence for 3 billion years of bacterial redox cycling of iron[J]. Frontier Research on Earth Evolution (IFREE report for 2003-2004), 2005: 1-8.

    [76]

    Yang S, Qu W, Tian Y, et al. Origin of the inconsistent apparent Re–Os ages of the Jinchuan Ni–Cu sulfide ore deposit, China: post-segregation diffusion of Os[J]. Chemical Geology,2008,247(3-4):401−418. doi: 10.1016/j.chemgeo.2007.11.002

    [77]

    Yang S, Yang G, Qu W, et al. Pt-Os isotopic constraints on the age of hydrothermal overprinting on the Jinchuan Ni-Cu-PGE deposit, China[J]. Mineralium Deposita,2018,53:757−774. doi: 10.1007/s00126-017-0775-z

    [78]

    Zhang M, Kamo S L, Li C, et al. Precise U–Pb zircon–baddeleyite age of the Jinchuan sulfide ore-bearing ultramafic intrusion, western China[J]. Mineralium Deposita,2010,45:3−9. doi: 10.1007/s00126-009-0259-x

  • 加载中

(5)

(1)

计量
  • 文章访问数:  46
  • PDF下载数:  10
  • 施引文献:  0
出版历程
收稿日期:  2025-04-13
修回日期:  2025-05-16
录用日期:  2025-05-18
刊出日期:  2025-08-20

目录