Hydraulic Fracturing Characteristics and Fracture Mechanism of Granite under High Temperature and Pressure
-
摘要:
地热能作为一种分布广泛的可再生资源,已成为人类未来能源安全的重要保障。干热岩型地热能因其储量巨大和清洁、高效、可再生的特点具有重大的开采价值。目前,干热岩开采通常需要通过水力压裂来制造渗流换热通道,因此,储层水力压裂特征和破裂机制研究对于干热岩资源的高效开采具有重要意义。笔者以常见的干热岩储层——花岗岩为研究对象,研究了不同围压、温度下水力压裂特征;分析了压裂过程中声发射特征演化规律;阐明了裂隙扩展规律及水力压裂影响因素;揭示了水力压裂破裂机制和裂隙扩展准则。实验结果表明:①常温和高温下花岗岩的水力压裂曲线均可以分为管孔充水、管孔增压、水力压裂、裂隙扩展4个阶段。②压裂后的裂隙均沿着管孔的深度方向扩展,随着围压的增加,裂隙长度增大,裂隙路径更为复杂,裂隙扩展类型包括沿晶断裂和穿晶断裂。③水力压裂特征受围压和温度的影响明显,温度一定时,围压越大,破裂压力越大,二者的关系近似呈线性;围压一定时,温度越高破裂压力越大,但这种相关性并非线性。④花岗岩水力压裂主导破裂机制为张拉破裂,但裂隙仍存在剪切破裂特征;破裂压力受围压、温度和岩石材料性质的多重影响。研究结果可为花岗岩热储层的压裂设计提供支撑。
Abstract:Geothermal energy, as a widely distributed renewable resource, has become a crucial safeguard for humanity's future energy security. Enhanced geothermal systems (EGS), particularly those involving hot dry rock (HDR), hold significant exploitation value due to their vast reserves and characteristics of cleanliness, high efficiency, and renewability. Currently, the extraction of HDR typically requires hydraulic fracturing to create permeable flow channels for heat exchange. Therefore, research on the hydraulic fracturing characteristics and fracture mechanisms of reservoirs is of great importance for the efficient exploitation of HDR resources. This study focuses on granite, a common HDR reservoir, to investigate the hydraulic fracturing characteristics under varying confining pressures and temperatures. The evolution of acoustic emission (AE) characteristics during the fracturing process was analyzed, the fracture propagation patterns were elucidated, the influencing factors of hydraulic fracturing were clarified, and the fracture mechanisms and crack propagation criteria of hydraulic fracturing were revealed. The experimental results demonstrate that: (1) The hydraulic fracturing curves of granite under both room temperature and high temperature can be divided into four stages: borehole water filling, borehole pressure increase, hydraulic fracturing, and fracture propagation. (2) Post-fracturing cracks predominantly propagate along the borehole's depth direction. As the confining pressure increases, the crack length extends, and the fracture path becomes more complex. The fracture propagation modes include intergranular and transgranular fractures. (3) Hydraulic fracturing characteristics are significantly influenced by confining pressure and temperature. At a constant temperature, the breakdown pressure increases with higher confining pressure, exhibiting an approximately linear relationship. Under constant confining pressure, the breakdown pressure rises with increasing temperature, though this correlation is nonlinear. (4) The dominant fracture mechanism in granite hydraulic fracturing is tensile failure, though shear failure characteristics are also observed. The breakdown pressure is influenced by multiple factors, including confining pressure, temperature, and the material properties of the rock. The findings of this study can provide theoretical support for the fracturing design of granite-based geothermal reservoirs.
-
Key words:
- hot dry rock (HDR) /
- hydraulic fracturing /
- fracture propagation /
- fracture mechanism
-
-
[1] 甘一雄, 吴顺川, 任义, 等. 基于声发射上升时间/振幅与平均频率值的花岗岩劈裂破坏评价指标研究[J]. 岩土力学, 2020(7): 41.
GAN Yixiong, WE Shunchuan, REN Yi, et al. Evaluation indexes of granite splitting failure based on RA and AF of AE parameters[J]. Rock and Soil Mechanics, 2020(7): 41.
[2] 郭亮亮. 增强型地热系统水力压裂和储层损伤演化的试验及模型研究[D]. 长春: 吉林大学, 2016.
GUO Liangliang. Test and model research of hydraulic fracturing and reservoir damage evolution in Enhanced Geothermal System[D]. Changchun: Jilin University, 2016.
[3] 郭森, 马致远, 李劲彬, 等. 我国地热供暖的现状及展望[J]. 西北地质, 2015, 48(4): 204−209.
GUO Sen, MA Zhiyuan, LI Jinbin, et al. Status and Prospects of Geothermal Heating in China[J]. Northwestern Geology, 2015, 48(4): 204−209.
[4] 胡剑, 苏正, 吴能友, 等. 增强型地热系统热流耦合水岩温度场分析[J]. 地球物理学进展, 2014, 29(3): 1391−1398.
HU Jian, SU Zheng, WU Nengyou, et al. Analysis on temperature fields of thermal-hydraulic coupled fluid and rock in Enhanced Geothermal System[J]. Progress in Geophysics, 2014, 29(3): 1391−1398.
[5] 李全贵, 邓羿泽, 胡千庭, 等. 煤岩水力压裂物理试验研究综述及展望[J]. 煤炭科学技术, 2022, 50(12): 62−72.
LI Quangui, DENG Yize, HU Qianting, et al. Review and prospect of coal rock hydraulie fracturing physical experimental research[J]. [J]. Coal Science and Technology, 2022, 50(12): 62−72.
[6] 李馨馨, 李典庆, 徐轶. 地热对井系统裂隙岩体三维渗流传热耦合的等效模拟方法[J]. 工程力学, 2019, 36(7): 10.
LI Xinxin, LI Dianqing, XU Yi. Equivalent simulation method of three-dimensional seepage and heat transfer coupling in fractured rock mass of geothermal-borehole system[J]. Engineering Mechanics, 2019, 36(7): 10.
[7] 刘文辉, 董英, 张新社, 等. 西北省会城市地热中深层地埋管供热系统发展潜力及环境效益分析[J]. 西北地质, 2023, 56(3): 186−195. doi: 10.12401/j.nwg.2023078
LIU Wenhui, DONG Ying, ZHANG Xinshe, et al. Development Potential and Environmental Benefit Analysis of Geothermal Medium–Deep Buried Pipe Heating System in Capital Cities in Northwest China[J]. Northwestern Geology, 2023, 56(3): 186−195. doi: 10.12401/j.nwg.2023078
[8] 雷治红. 青海共和盆地干热岩储层特征及压裂试验模型研究[D]. 长春: 吉林大学, 2020.
LEI Zhihong. Study on the characteristics of hot dry rock reservoir and fracturing test model in the Gonghe Basin, Qinghai Province[D]. Changchun: Jilin University, 2020.
[9] 刘生荣, 罗新刚, 辜平阳, 等. 共和盆地深部构造格架及其对干热岩热源的影响[J]. 西北地质, 2024, 57(5): 130−141. doi: 10.12401/j.nwg.2024068
LIU Shengrong, LUO Xingang, GU Pingyang, et al. Deep Tectonic Framework of Gonghe Basin and Its Influence on Heat Source of Dry Hot Rock[J]. Northwestern Geology, 2024, 57(5): 130−141. doi: 10.12401/j.nwg.2024068
[10] 马兵. 热固耦合下储层岩石的地质力学特性及损伤演化规律研究[D]. 重庆: 重庆大学, 2019.
MA Bing. Study on Geomechanical Behavior and Damage Evolution of Reservoir Rock under Thermo-mechanical Coupling[D]. Chongqing: Chongqing University, 2019.
[11] 谢紫霄, 黄中伟, 熊建华, 等. 天然裂缝对干热岩水力压裂裂缝扩展的影响规律[J]. 天然气工业, 2022, 42(4): 63−72.
XIE Zixiao, HUANG Zhongwei, XIONG, Jianhua et al. Influence of natural fractures on the propagation of hydraulie fractures in hot dry rock[J]. Natural Gas Industry, 2022, 42(4): 63−72.
[12] 熊峰. 裂隙岩体非线性渗流特性及水热耦合模拟研究[D]. 武汉: 武汉大学, 2020.
XIONG Feng. Study on nonlinear flow behaviors and coupled hydro-thermal simulation of fractured rock masses[D]. Wuhan: Wuhan University, 2020.
[13] 胥博文, 朱怀亮, 杨忠彦, 等. MT法和二维地震勘探在太康隆起西部地区地热资源调查评价中的应用[J]. 西北地质, 2025, 58(3): 131−142. doi: 10.12401/j.nwg.2024099
XU Bowen, ZHU Huailiang, YANG Zhongyan, et al. The Application of MT Method and 2D Seismic Exploration to Detect Geothermal Resources in Western Region of Taikang Uplift[J]. Northwestern Geology, 2025, 58(3): 131−142. doi: 10.12401/j.nwg.2024099
[14] 袁星芳, 邢立亭, 贾群龙, 等. 威海市七里汤地热田特征及其成因机制[J]. 西北地质, 2023, 56(6): 209−218. doi: 10.12401/j.nwg.2023050
YUAN Xingfang, XING Liting, JIA Qunlong, et al. Characteristics and Genetic Mechanism of Qilitang Geothermal Field in Weihai[J]. Northwestern Geology, 2023, 56(6): 209−218. doi: 10.12401/j.nwg.2023050
[15] Chen Y, Nagaya Y, Ishida T. Observations of Fractures Induced by Hydraulic Fracturing in Anisotropic Granite[J]. Rock Mechanics Rock Engineering, 2015, 48(4): 1455−1461.
[16] Deng J Q, Lin C, Yang Q, et al. Investigation of directional hydraulic fracturing based on true tri-axial experiment and finite element modeling[J]. Computers and Geotechnics, 2016, 75: 28−47. doi: 10.1016/j.compgeo.2016.01.018
[17] Fan T G, Zhang G Q. Laboratory investigation of hydraulic fracture networks in formations with continuous orthogonal fractures[J]. Energy, 2014, 74: 164−173. doi: 10.1016/j.energy.2014.05.037
[18] He J, Lin C, Li X, et al. Initiation, propagation, closure and morphology of hydraulic fractures in sandstone cores[J]. Fuel, 2017, 208: 65−70. doi: 10.1016/j.fuel.2017.06.080
[19] Kumari W G P, Ranjith P G, Perera M S A, et al. Hydraulic fracturing under high temperature and pressure conditions with micro CT applications: Geothermal energy from hot dry rocks[J]. Fuel, 2018, 230: 138−154. doi: 10.1016/j.fuel.2018.05.040
[20] Kumari W G P, Ranjith P G, Perera M S A, et al. Experimental investigation of quenching effect on mechanical, microstructural and flow characteristics of reservoir rocks: Thermal stimulation method for geothermal energy extraction[J]. Journal of Petroleum Science and Engineering, 2018, 162: 419−433. doi: 10.1016/j.petrol.2017.12.033
[21] Lin C, He J, Li X, et al. An Experimental Investigation into the Effects of the Anisotropy of Shale on Hydraulic Fracture Propagation[J]. Rock Mechanics and Rock Engineering, 2017, 50(3): 543−554. doi: 10.1007/s00603-016-1136-4
[22] Mao R B, Feng Z J, Liu Z H, et al. Laboratory hydraulic fracturing test on large-scale pre-cracked granite specimens[J]. Journal of Natural Gas Science and Engineering, 2017: 278−286.
[23] Sebastian B, Michael M, Ferdinand S C, et al. Hydraulic and Sleeve Fracturing Laboratory Experiments on 6 Rock Types[A]. Andrew P B, John M, Rob J (eds). Effective and Sustainable Hydraulic Fracturing[M]. 2013, Ch 20.
[24] Shao H, Kabilan S, Childers M I, et al. Environmentally friendly, rheoreversible, hydraulic fracturing fluids for enhanced geothermal systems[J]. Geothermics, 2018, 58: 72.
[25] Stephen, Rassenfoss. Digging Up New Information On What Fractures Really Look Like[J]. Journal of Petroleum Technology, 2018, 70(3): 38−39.
[26] Tan P, Jin Y, Han K, et al. Analysis of hydraulic fracture initiation and vertical propagation behavior in laminated shale formation[J]. Fuel, 2017, 206: 482−493. doi: 10.1016/j.fuel.2017.05.033
[27] Zhuang L, Kim K Y, Jung S G, et al. Effect of Water Infiltration, Injection Rate and Anisotropy on Hydraulic Fracturing Behavior of Granite[J]. 2018(3): 1-15.
-