Sources of Ore-forming Materials and Ore-forming Model of the Jiudian Gold Deposit in Pingdu, Shandong Province
-
摘要:
山东平度旧店金矿床地处胶东金成矿省西北部、招平断裂带南段,是该地区石英脉型金矿床的典型代表。虽然该矿床开采历史悠久,但由于规模较小,矿床成因研究较为薄弱,制约了对区域成矿规律的认识。本次研究在详细的野外地质调查基础之上,开展了含矿石英脉中石英氢氧同位素和黄铁矿硫同位素分析,以期揭示成矿流体和金属来源,厘定矿床成矿模式。研究表明,旧店金矿床成矿过程可分为早成矿阶段(I)、主成矿阶段(II)和晚成矿阶段(III)3个阶段,其中主成矿阶段是金矿化主要发育阶段,包括中粗粒黄铁矿阶段(II1)、细粒–微细粒黄铁矿阶段(II2)和多金属硫化物阶段(II3)3个亚阶段。不同成矿阶段的石英氢氧同位素特征显示,早成矿阶段成矿流体δ18OH2O值为2.22‰~4.64‰,δDV-SMOW值为−90.2‰~−72.2‰,主成矿阶段成矿流体δ18OH2O值为1.17‰~4.36‰,δDV-SMOW值为−84.3‰~−77.1‰,晚成矿阶段成矿流体δ18OH2O值为−0.01‰~4.28‰,δDV-SMOW值为−97.7‰~−87.1‰。旧店金矿床早阶段成矿流体以岩浆水为主,随着流体演化,大气降水逐步混入且所占比例不断增加。不同成矿阶段的黄铁矿硫同位素无明显差异,δ34S值大多为7.65‰~10.10‰(平均值为8.87‰),这一范围与前寒武纪变质基底和中生代花岗岩特征十分类似。综合前人研究成果,建立了旧店金矿成矿模式:晚侏罗世,旧店地区大量含金的古老变质岩基底发生重熔,形成玲珑型花岗岩;在早白垩晚期受华北克拉通东部岩石圈大规模伸展–减薄和软流圈上涌影响,花岗岩和变质岩残留体中的金发生活化富集,并在岩浆水和大气降水组成的混合流体作用下,在招平断裂带下盘次级断裂构造中富集成矿。
Abstract:The Jiudian gold deposit in Pingdu, Shandong Province, is located in the northwestern part of the Jiaodong gold metallogenic province and the southern segment of the Zhaoping Fault Zone. It serves as a typical representative of quartz-vein type gold deposits in this region. Despite its long mining history, genetic studies of this relatively small-scale deposit have remained inadequate, constraining the understanding of regional metallogenic regularity. Based on detailed field geological investigations, this study conducted hydrogen-oxygen isotopic analyses of quartz from ore-bearing veins and sulfur isotopic analyses of pyrite from ores, aiming to elucidate ore-forming fluid and metal sources and establish a metallogenic model for the deposit. Research indicates that the mineralization process of the Jiudian gold deposit can be divided into three stages: early mineralization stage (I), main mineralization stage (II), and late mineralization stage (III). The main mineralization stage represents the primary period of gold mineralization, further subdivided into three sub-stages: medium-coarse grained pyrite stage (II1), fine-micron fine grained pyrite stage (II2), and polymetallic sulfide stage (II3). Isotopic characteristics of quartz from different mineralization stages show: δ18OH2O=2.22‰~4.64‰ and δDV-SMOW=−90.2‰~−72.2‰ for the early stage; δ18OH2O=1.17‰~4.36‰ and δDV-SMOW=−84.3‰~−77.1‰ for the main stage; δ18OH2O=−0.01‰~4.28‰ and δDV-SMOW=−97.7‰~−87.1‰ for the late stage. The early-stage ore-forming fluids were predominantly magmatic water, with progressive mixing and increasing proportion of meteoric water during fluid evolution. Sulfur isotopic compositions of pyrite from different mineralization stages show no significant variation, with δ34S values ranging from 7.65‰ to 10.10‰ (average 8.87‰), closely resembling the characteristics of Precambrian metamorphic basements and Mesozoic granites. Integrating previous research findings, a metallogenic model for the Jiudian gold deposit is proposed: During the Late Jurassic, remelting of gold-bearing ancient metamorphic basement rocks in the Jiudian area formed Linglong-type granites. In the Late Early Cretaceous, under the influence of large-scale lithospheric extension-thinning in the eastern North China Craton and asthenosphere upwelling, gold from granites and metamorphic rock relics underwent mobilization and enrichment. Driven by mixed fluids composed of magmatic water and meteoric water, gold precipitation occurred in secondary fracture structures within the footwall of the Zhaoping Fault Zone, forming the ore deposit.
-
Key words:
- H-O-S Isotopes /
- source of ore-forming materials /
- ore-forming model /
- Jiudian gold deposit /
- Jiaodong
-
-
图 1 旧店金矿床大地构造位置示意图(据邓军等,2023修改)
Figure 1.
表 1 旧店金矿及其他金矿成矿流体H-O同位素组成
Table 1. H-O isotope compositions of the ore-forming fluids in the Jiudian gold deposit and other gold deposits
金矿床 样品数 样号 测试矿物 δDV-SMOW (‰) δ18O V-SMOW (‰) 温度(℃) δ18OH2O(‰) 数据来源 旧店 13 I阶段-JD4-0301 石英 −90.2 12.77 270.0 4.64 本文 I阶段-JD4-0501 −72.6 10.33 270.0 2.22 I阶段-JD4-0801 −72.2 11.18 270.0 3.07 II阶段-JD4-0802 −81.9 12.39 270.0 4.27 II阶段-JD12-0706 −80.5 12.21 270.0 4.09 II阶段-JD12- 1601 −80.9 12.48 270.0 4.36 II阶段-JD4-0302 −84.3 10.52 270.0 2.41 II阶段-JD12-0809 −77.1 12.31 270.0 4.19 II阶段-JD12-1408 −78.9 9.27 270.0 1.17 II阶段-JD12-1602 −80.4 12.16 270.0 4.04 III阶段-JD4-0806 −97.7 12.4 270.0 4.28 III阶段-JD4-1402 −87.1 8.08 270.0 −0.01 III阶段-JD12-0704 −91.1 12.39 270.0 4.27 旧店 6 JD-TW1等 石英 −83.4~−74.2 10.7~12.8 300.0 3.81~5.91 Tian et al.,2022 旧店 7 17S32等 石英 −92~−74.2 9.1~13.4 265.2 0.84~5.14 安梦莹,2022 夏甸 9 XD-wd-1等 石英 −73.22~−46.22 10.4~12.4 240.0 −1.6~2.89 李逸凡等,2021 夏甸 3 XD-3等 石英 −99.8~−95.1 8.6~9.3 253.0 −0.2~0.5 杜佛光,2019 夏甸 3 713-41等 石英 −72.1~−66.2 13~14.9 172.0~363.7 4.6~9.2 吴迪,2016 大尹格庄 11 DYGZ-4-2等 石英 −103~−77.3 8.7~12.2 173.8~353.8 2.75~7.18 严子清等,2024 大尹格庄 11 Y309Cc3等 石英 −95~−68 7.3~12.7 280.0~350.0 −0.3~7.8 Yang et al.,2010 山后 5 SH-CM4-TW2等 石英 −90.7~−77 10.2~11.1 230.0 0.55~1.25 王巧云等,2023 山后 4 WH2-1等 石英 −82.1~−78.6 7.5~11.2 215.0 −3.28~0.42 安梦莹,2022 姜家窑 2 K3等 石英 −66.5~−61.78 7.9~8.5 311.0~344.0 1.57~2.1 王金辉,2020 曹家洼 3 K12等 石英 −74.16~−61.55 10.4~10.8 299.0~333.0 3.89~5.33 王金辉,2020 谢家沟 15 XJG19等 石英 −106~−85 7.7~11.3 209.0~351.0 0.8~5.7 Du et al.,2023 三山岛 2 S615-1等 石英 −83.1~−79.1 13.55~13.67 257.0~335.0 7.49~7.61 王金雅,2020 焦家 5 J450-1等 石英 −95.8~−68.3 10.4~14.58 200.0~400.0 3.94~8.38 辛洪波,2005 新立 9 XJG19等 石英 −77.63~−68.77 11.4~14.17 165.0~310.0 −0.17~7.02 毛兴强,2022 表 2 旧店金矿床及其他地质单元S同位素特征
Table 2. Sulfur isotope characteristics of the Jiudian gold deposit and other geological units
金矿/地质单元 样品数 样号 矿物/对象 δ34S值(‰) 数据来源 旧店金矿 13 I阶段-JD4-0301 黄铁矿 8.46 本文 I阶段-JD4-0501 8.67 I阶段-JD4-0801 8.46 II阶段-JD4-0802 10.1 II阶段-JD12-0706 9.51 II阶段-JD12-1601 7.65 II阶段-JD4-0302-1 9.23 II阶段-JD4-0302-2 9.15 II阶段-JD12-0809 8.29 II阶段-JD12-1408-1 9.75 II阶段-JD12-1408-2 9.63 II阶段-JD12-1602 8.72 III阶段-JD4-0806 7.81 III阶段-JD4-1402 8.56 III阶段-JD12-0704 9.03 玲珑金矿 5 JQ-Q-04等 黄铁矿 5.9~7.4 Wen et al.,2015 东风金矿 5 10LL18等 黄铁矿 5.8~7.0 Wen et al.,2015 大尹格庄金矿 10 DYGZ-4-2等 黄铁矿 3.1~7.6 严子清等,2024 夏甸金矿 7 713-1等 黄铁矿 6.95~8.1 Liu et al.,2018 夏甸金矿2 10 XD-wd-1等 黄铁矿 6.3~8.1 李逸凡等,2021 谢家沟金矿 42 XJG34-2-1-Py等 黄铁矿 5.7~9.0 Du et al.,2023 焦家金矿1 5 17JJ04-1等 黄铁矿 8.7~11.2 Qiu et al.,2023 焦家金矿2 8 \ 黄铁矿 8.6~11.3 陈阳阳,2017 三山岛金矿1 7 09S37等 黄铁矿 11.5~12.4 姜晓辉等, 2011 三山岛金矿2 20 17SSD-1-1等 黄铁矿 9.4~13.0 Qiu et al.,2023 新城金矿 33 XC12D001B1等 黄铁矿 5.7~10.6 张潮等,2014 新立金矿 6 XL48508-21等 黄铁矿 7.7~13.2 毛兴强等,2022 金青顶金矿 8 J-335-05等 黄铁矿 6.95~8.69 李旭芬,2011 大柳行金矿 6 DLH-1等 黄铁矿 6.3~7.7 黄鑫,2021 胶东群 3 XC10D218B1等 黄铁矿 6.9~9.4 张潮等,2014 荆山群 6 \ 黄铁矿 9.3~9.8 张竹如等,1999 玲珑花岗岩 8 LL-190-9等 黄铁矿 6.1~10.1 毛景文等,2005 郭家岭花岗闪长岩 5 \ 黄铁矿 2.4~9.7 宋明春等,2013 中基性岩脉 6 \ 黄铁矿 5.4~11.2 李俊建等,2006 -
[1] 安梦莹. 胶东招平断裂带南段金矿成矿作用及成矿规律[D]. 石家庄: 河北地质大学, 2022.
AN Mengying. Metallogenic Processes and Regularities of Gold Deposits in the Southern Section of the Zhaoping Fault Zone, Jiaodong[D]. Shijiazhuang: Hebei GEO University, 2022.
[2] 陈燕平, 李增胜, 李旭平, 等. 胶东辽上金矿荆山群U-Pb年代学特征及其记录的多期地质事件[J]. 岩石学报, 2024, 40(11): 3643−3662.
CHEN Yanping, LI Zengsheng, LI Xuping, et al. U-Pb Chronology Characteristics of the Jingshan Group in the Liaoshang Gold Deposit, Jiaodong and Its Recorded Multiple Geological Events[J]. Acta Petrologica Sinica, 2024, 40(11): 3643−3662.
[3] 陈阳阳. 山东焦家金矿床地球化学特征及矿床成因探讨[D]. 西安: 长安大学, 2017.
CHEN Yangyang. Geochemical Characteristics and Genesis of the Jiaojia Gold Deposit in Shandong[D]. Xi'an: Chang'an University, 2017.
[4] 邓军, 王庆飞, 张良, 等. 胶东型金矿成因模型[J]. 中国科学: 地球科学, 2023, 53(10): 2323−2347.
DENG Jun, WANG Qingfei, ZHANG Liang, et al. Genetic Model of Jiaodong-Type Gold Deposits[J]. Science China: Earth Sciences, 2023, 53(10): 2323−2347.
[5] 杜佛光, 姜耀辉, 青龙, 等. 胶东夏甸金矿成矿流体及成矿物质来源: H-O、He-Ar、Sr-Nd-Pb同位素证据[J]. 高校地质学报, 2019, 25(5): 686−696.
DU Fuguang, JIANG Yaohui, QING Long, et al. Ore-Forming Fluids and Sources of Ore-Forming Materials of the Xiadian Gold Deposit in Jiaodong: Evidence from H-O, He-Ar, and Sr-Nd-Pb Isotopes[J]. Geological Journal of China Universities, 2019, 25(5): 686−696.
[6] 冯李强. 山东蓬莱石家金矿床成因与找矿方向[D]. 北京: 中国地质大学(北京), 2022.
FENG Liqiang. Genesis and Prospecting Direction of the Shijia Gold Deposit in Penglai, Shandong[D]. Beijing: China University of Geosciences (Beijing), 2022.
[7] 黄鑫. 胶东大柳行金矿矿床特征及成因探讨[J]. 西北地质, 2021, 54(4): 129−141.
HUANG Xin. Characteristics and Genesis of the Daliliuxing Gold Deposit in Jiaodong[J]. Northwestern Geology, 2021, 54(4): 129−141.
[8] 姜文峰, 张彬. 山东平度旧店金矿床的成矿特点及深部盲矿预测标志[J]. 黄金科学技术, 2008, (4): 45−47.
JIANG Wenfeng, ZHANG Bin. Metallogenic Characteristics and Deep Blind Ore Prediction Marks of the Jiudian Gold Deposit in Pingdu, Shandong[J]. Gold Science and Technology, 2008, (4): 45−47.
[9] 姜晓辉, 范宏瑞, 胡芳芳, 等. 胶东三山岛金矿中深部成矿流体对比及矿床成因[J]. 岩石学报, 2011, 27(5): 1327−1340.
JIANG Xiaohui, FAN Hongrui, HU Fangfang, et al. Comparison of Ore-Forming Fluids in the Middle and Deep Parts of the Sanshandao Gold Deposit in Jiaodong and the Deposit Genesis[J]. Acta Petrologica Sinica, 2011, 27(5): 1327−1340.
[10] 旷红伟, 柳永清, 耿元生, 等. 中国中—新元古代地层研究进展及建议划分、对比方案[J]. 地质学报, 2023, 97(12): 3961−4019.
KUANG Hongwei, LIU Yongqing, GENG Yuansheng, et al. Research Progress on the Meso-Neoproterozoic Strata in China and Suggested Division and Correlation Schemes[J]. Acta Geologica Sinica, 2023, 97(12): 3961−4019.
[11] 李经纬, 邱昆峰, 马明, 等. 胶东旧店金矿床赋矿岩浆岩岩石成因及其地质意义[J]. 岩石学报, 2023, 39(2): 393−410.
LI Jingwei, QIU Kunfeng, MA Ming, et al. Petrogenesis of the Ore-Bearing Magmatic Rocks in the Jiudian Gold Deposit, Jiaodong and Its Geological Significance[J]. Acta Petrologica Sinica, 2023, 39(2): 393−410.
[12] 李俊建. 华北陆块主要成矿区带成矿规律和找矿方向[M]. 天津: 天津科学技术出版社, 2006, 297−312.
LI Junjian. Metallogenic Regularities and Prospecting Directions of the Main Metallogenic Belts in the North China Block[M]. Tianjin: Tianjin Science and Technology Press, 2006: 297−312.
[13] 李守军. 山东侏罗-白垩纪地层划分与对比[J]. 石油大学学报(自然科学版), 1998, 22(1): 4−7, 111.
LI Shoujun. Division and Correlation of the Jurassic-Cretaceous Strata in Shandong[J]. Journal of the University of Petroleum, China (Edition of Natural Science), 1998, 22(1): 4−7, 111.
[14] 李旭芬. 胶东牟平-乳山金矿带金青顶金矿矿床成因与找矿方向研究[D]. 西安: 长安大学, 2011.
LI Xufen. Study on the Genesis and Prospecting Direction of the Jinqingding Gold Deposit in the Muping-Rushan Gold Belt, Jiaodong[D]. Xi'an: Chang'an University, 2011.
[15] 李逸凡, 李洪奎, 汤启云, 等. 山东旧店金矿黄铁矿标型特征及其地质意义[J]. 黄金科学技术, 2015, 23(2): 45−50.
LI Yifan, LI Hongkui, TANG Qiyun, et al. Typomorphic Characteristics of Pyrite in the Jiudian Gold Deposit in Shandong and Their Geological Significance[J]. Gold Science and Technology, 2015, 23(2): 45−50.
[16] 李逸凡, 李洪奎, 韩学林, 等. 胶东夏甸金矿床成因: 流体包裹体及同位素证据[J]. 黄金科学技术, 2021, 29(2): 184−199.
LI Yifan, LI Hongkui, HAN Xuelin, et al. Genesis of the Xiadian Gold Deposit in Jiaodong: Evidence from Fluid Inclusions and Isotopes[J]. Gold Science and Technology, 2021, 29(2): 184−199.
[17] 刘利双, 刘福来, 冀磊, 等. 北苏鲁超高压变质带内多成因类型的变花岗质岩石及其地质意义[J]. 岩石学报, 2018, 34(6): 1557−1580.
LIU Lishuang, LIU Fulai, JI Lei, et al. Polygenetic Granitic Rocks in the North Sulu Ultrahigh-Pressure Metamorphic Belt and Their Geological Significance[J]. Acta Petrologica Sinica, 2018, 34(6): 1557−1580.
[18] 刘天航, 唐卫东, 高永宝, 等. 内蒙古北山花石头山萤石矿床成因: 萤石微量、稀土和H-O同位素制约[J]. 西北地质, 2024, 57(4): 66−79.
LIU Tianhang, TANG Weidong, GAO Yongbao, et al. Genesis of the Huashitoushan Fluorite Deposit, Beishan, In-ner Mongolia: Constraints from Trace Elements, REE and H-O Isotope Geochemistry of Fluorite[J]. Northwestern Geology, 2024, 57(4): 66−79.
[19] 刘晓阳, 谭俊, 王怀洪, 等. 胶东范家庄地区晚侏罗世低镁埃达克质花岗岩成因及构造背景[J]. 地球科学, 2020, 45(2): 451−466.
LIU Xiaoyang, TAN Jun, WANG Huaihong, et al. Genesis and Tectonic Setting of the Late Jurassic Low-Mg Adakitic Granites in the Fanjiacun Area, Jiaodong[J]. Earth Science, 2020, 45(2): 451−466.
[20] 马健, 吕新彪, 但荣飞, 等. 西秦岭左家庄金矿成因研究: 来自黄铁矿微量元素及多元同位素地球化学的制约[J]. 地学前缘, 2019, 26(5): 146−162.
MA Jian, LV Xinbiao, DAN Rongfei, et al. Genetic Study of the Zuojiazhuang Gold Deposit in the Western Qinling Mountains: Constraints from Trace Elements and Multiple Isotope Geochemistry of Pyrite[J]. Earth Science Frontiers, 2019, 26(5): 146−162.
[21] 毛景文, 李厚民, 王义天, 等. 地幔流体参与胶东金矿成矿作用的氢氧碳硫同位素证据[J]. 地质学报, 2005, 79(6): 839−857.
MAO Jingwen, LI Houmin, WANG Yitian, et al. Evidence from H, O, C, and S Isotopes for the Involvement of Mantle Fluids in the Metallogenesis of Jiaodong Gold Deposits[J]. Acta Geologica Sinica, 2005, 79(6): 839−857.
[22] 毛兴强, 王恩德, 杨群, 等. 山东省胶东半岛新立金矿床成因[J]. 地质通报, 2022, 41(10): 1855−1868.
MAO Xingqiang, WANG Ende, YANG Qun, et al. Genesis of the Xinli Gold Deposit in the Jiaodong Peninsula, Shandong Province[J]. Geological Bulletin of China, 2022, 41(10): 1855−1868.
[23] 倪培, 迟哲, 潘君屹. 斑岩型和浅成低温热液型矿床成矿流体与找矿预测研究: 以华南若干典型矿床为例[J]. 地学前缘, 2020, 27(2): 60−78.
NI Pei, CHI Zhe, PAN Junyi. Research on Ore-Forming Fluids and Prospecting Prediction of Porphyry and Epithermal Deposits: Taking Several Typical Deposits in South China as Examples[J]. Earth Science Frontiers, 2020, 27(2): 60−78.
[24] 牛警徽, 田福泉, 邱敦方, 等. 山东旧店金矿床花岗岩类锆石U-Pb年龄及对招平断裂带南段岩浆活动规律的约束[J]. 地质通报, 2023, 42(5): 813−827.
NIU Jinghui, TIAN Fuquan, QIU Dunfang, et al. Zircon U-Pb Ages of Granitoids in the Jiudian Gold Deposit in Shandong and Their Constraints on the Magmatic Activity Regularities in the Southern Section of the Zhaoping Fault Zone[J]. Geological Bulletin of China, 2023, 42(5): 813−827.
[25] 牛警徽, 吴明刚, 范德江, 等. 胶东地区招平断裂带南段旧店金矿床流体包裹体研究[A]//中国矿物岩石地球化学学会矿床地球化学专业委员会. 第十届全国成矿理论与找矿方法学术讨论会论文摘要集[C]. 2023b, 50.
NIU Jinghui, WU Minggang, FAN Dejiang, et al. Study on Fluid Inclusions in the Jiudian Gold Deposit in the Southern Section of the Zhaoping Fault Zone, Jiaodong Area[A]// Ore Deposit Geochemistry Committee of the Geochemical Society of China. Abstracts of the 10th National Symposium on Metallogenic Theory and Prospecting Methods[C]. 2023b, 50.
[26] 庞崇进. 华北克拉通东部白垩纪中基性火山岩的年代学和地球化学特征[D]. 广州: 中国科学院研究生院(广州地球化学研究所), 2015.
PANG Chongjin. Geochronology and Geochemical Characteristics of Cretaceous Mafic-Ultramafic Volcanic Rocks in the Eastern North China Craton[D]. Guangzhou: Graduate University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry), 2015.
[27] 任凤楼, 柳忠泉, 邱连贵, 等. 胶莱盆地莱阳期原型盆地恢复[J]. 沉积学报, 2008, 24(2): 221−233.
REN Fenglou, LIU Zhongquan, QIU Liangui, et al. Restoration of the Prototype Basin of the Laiyang Period in the Jiaolai Basin[J]. Acta Sedimentologica Sinica, 2008, 24(2): 221−233.
[28] 宋明春, 丁正江, 刘向东, 等. 胶东型金矿床断裂控矿及成矿模式[J]. 地质学报, 2022a, 96(5): 1774−1802.
SONG Mingchun, DING Zhengjiang, LIU Xiangdong, et al. Fault control of ore deposits and ore-forming models of Jiaodong-type gold deposits[J]. Acta Geologica Sinica, 2022a, 96(5): 1774−1802.
[29] 宋明春, 宋英昕, 李杰, 等. 胶东型金矿热隆-伸展成矿系统[J]. 岩石学报, 2023, 39(5): 1241−1260.
SONG Mingchun, SONG Yingxin, LI Jie, et al. The Thermal-Uplift-Extension Metallogenic System of Jiaodong-Type Gold Deposits[J]. Acta Petrologica Sinica, 2023, 39(5): 1241−1260.
[30] 宋明春, 宋英昕, 沈昆, 等. 胶东焦家深部金矿矿床地球化学特征及有关问题讨论[J]. 地球化学, 2013, 42(3): 274−289.
SONG Mingchun, SONG Yingxin, SHEN Kun, et al. Geochemical Characteristics of the Deep Jiaojia Gold Deposit in Jiaodong and Discussion on Related Issues[J]. Geochimica, 2013, 42(3): 274−289.
[31] 宋明春, 杨立强, 范宏瑞, 等. 找矿突破战略行动十年胶东金矿成矿理论与深部勘查进展[J]. 地质通报, 2022b, 41(6): 903−935.
SONG Mingchun, YANG Liqiang, FAN Hongrui, et al. Progress in Metallogenic Theories and Deep Exploration of Jiaodong Gold Deposits during the Decade of the Strategic Action for Ore Prospecting Breakthrough[J]. Geological Bulletin of China, 2022b, 41(6): 903−935.
[32] 宋英昕, 宋明春, 丁正江, 等. 胶东金矿集区深部找矿重要进展及成矿特征[J]. 黄金科学技术, 2017, 25(3): 4−18.
SONG Yingxin, SONG Mingchun, DING Zhengjiang, et al. Important Progress in Deep Ore Prospecting and Metallogenic Characteristics of the Jiaodong Gold Ore Concentration Area[J]. Gold Science and Technology, 2017, 25(3): 4−18.
[33] 万渝生, 宋志勇, 王来明, 等. 华北克拉通太古宙典型地区栖霞县幅1: 5万地质图修编——野外地质调查和SHRIMP锆石U-Pb定年[J]. 地质通报, 2017, 36(11): 1927−1941.
WAN Yusheng, SONG Zhiyong, WANG Laiming, et al. Revision of the 1: 50, 000 Geological Map of the Qixian County Sheet in Typical Archean Areas of the North China Craton-Field Geological Investigation and SHRIMP Zircon U-Pb Dating[J]. Geological Bulletin of China, 2017, 36(11): 1927−1941.
[34] 汪浩, 孙唯品, 李华, 等. 原位硫-铅同位素对胶东旧店金矿床成矿物质来源的约束[J/OL]. 大地构造与成矿学, 1−30[2025-03-25].
WANG Hao, SUN Weipin, LI Hua, et al. Constraints on the Sources of Ore-Forming Materials of the Jiudian Gold Deposit in Jiaodong by In-Situ Sulfur-Lead Isotopes[J/OL]. Geotectonica et Metallogenia, 1−30[2025-03-25].
[35] 王惠初, 康健丽, 任云伟, 等. 华北克拉通~2.7Ga的BIF: 来自莱州-昌邑地区含铁建造的年代学证据[J]. 岩石学报, 2015, 31(10): 2991−3011.
WANG Huichu, KANG Jianli, REN Yunwei, et al. ~2.7Ga BIF in the North China Craton: Chronological Evidence from the Iron-Bearing Formations in the Laizhou-Changyi Area[J]. Acta Petrologica Sinica, 2015, 31(10): 2991−3011.
[36] 王金辉. 胶西北金成矿区He、Ar同位素组成及成矿流体来源研究[J]. 岩石矿物学杂志, 2020, 39(2): 172−182.
WANG Jinhui. He and Ar Isotope Compositions and Sources of Ore-Forming Fluids in the Jiaobei Gold Metallogenic Area[J]. Acta Petrologica et Mineralogica, 2020, 39(2): 172−182.
[37] 王金雅. 胶东地区Au成矿流体演化与成矿规律研究[D]. 西安: 长安大学, 2020.
WANG Jinya. Study on the Evolution of Au Ore-Forming Fluids and Metallogenic Regularities in the Jiaodong Area[D]. Xi'an: Chang'an University, 2020.
[38] 王巧云, 郭晶, 郝兴中, 等. 胶东山后金矿成矿流体及成矿物质来源: 来自H-O、Sr-Nd-Pb、He-Ar同位素证据[J]. 山东国土资源, 2023, 39(8): 1−7.
WANG Qiaoyun, GUO Jing, HAO Xingzhong, et al. Ore-Forming Fluids and Sources of Ore-Forming Materials of the Shanhou Gold Deposit in Jiaodong: Evidence from H-O, Sr-Nd-Pb, and He-Ar Isotopes[J]. Land and Resources in Shandong Province, 2023, 39(8): 1−7.
[39] 文志民, 姜深光, 李绪俊, 等. 山东旧店金矿1#脉地质地球化学特征及深部找矿[J]. 世界地质, 2013, 32(1): 45−53.
WEN Zhimin, JIANG Shenguang, LI Xujun, et al. Geological and Geochemical Characteristics of the No. 1 Vein in the Jiudian Gold Deposit in Shandong and Deep Prospecting[J]. World Geology, 2013, 32(1): 45−53.
[40] 吴迪. 山东夏甸金矿床地球化学特征及矿床成因探讨[D]. 西安: 长安大学, 2016.
WU Di. Geochemical Characteristics and Genesis of the Xiadian Gold Deposit in Shandong[D]. Xi'an: Chang'an University, 2016.
[41] 谢成连, 何国强, 史维全. 平度旧店金矿区同成矿构造与金的富集关系[J]. 山东国土资源, 2008(2): 9−11.
XIE Chenglian, HE Guoqiang, SHI Weiquan. Relationship between Syn-Metallogenic Structures and Gold Enrichment in the Jiudian Gold Mine Area in Pingdu[J]. Land and Resources in Shandong Province, 2008(2): 9−11.
[42] 辛洪波. 胶东谢家沟金矿与焦家金矿地质特征与成因对比[D]. 北京: 中国地质大学(北京), 2005.
XIN Hongbo. Comparison of Geological Characteristics and Genesis between the Xiejiagou Gold Deposit and the Jiaojia Gold Deposit in Jiaodong[D]. Beijing: China University of Geosciences (Beijing), 2005.
[43] 徐扬, 李日辉, 温珍河, 等. 胶北地块和北苏鲁超高压变质带前寒武纪基底对比研究[J]. 海洋地质与第四纪地质, 2015, 35(1): 99−110.
XU Yang, LI Rihui, WEN Zhenhe, et al. Comparative Study on the Precambrian Basements of the Jiaobei Block and the North Sulu Ultrahigh-Pressure Metamorphic Belt[J]. Marine Geology & Quaternary Geology, 2015, 35(1): 99−110.
[44] 严子清, 石文杰, 张鹏涛, 等. 胶东大尹格庄金矿成矿流体时空演化及矿床成因: 来自流体包裹体、成矿元素和H-O-S-Pb同位素证据[J]. 地质科技通报, 2024, 43(2): 156−174.
YAN Ziqing, SHI Wenjie, ZHANG Pengtao, et al. Temporal and Spatial Evolution of Ore-Forming Fluids and Genesis of the Dayingezhuang Gold Deposit in Jiaodong: Evidence from Fluid Inclusions, Ore-Forming Elements, and H-O-S-Pb Isotopes[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 156−174.
[45] 杨立强, 邓军, 张良, 等. 胶东型金矿[J]. 岩石学报, 2024, 40(6): 1691−1711.
YANG Liqiang, DENG Jun, ZHANG Liang, et al. Jiaodong-Type Gold Deposits[J]. Acta Petrologica Sinica, 2024, 40(6): 1691−1711.
[46] 杨立强, 魏瑜吉, 王偲瑞, 等. 胶东金矿床中关键金属资源储量估算与潜力初探[J]. 岩石学报, 2022, 38(1): 9−22. doi: 10.18654/1000-0569/2022.01.02
YANG Liqiang, WEI Yujie, WANG Sierui, et al. Preliminary Exploration of the Reserve Estimation and Potential of Key Metal Resources in Jiaodong Gold Deposits[J]. Acta Petrologica Sinica, 2022, 38(1): 9−22. doi: 10.18654/1000-0569/2022.01.02
[47] 岳石, 赵寅震. 胶东旧店金矿构造控矿特征研究[J]. 地质找矿论丛, 1988(2): 38−46.
YUE Shi, ZHAO Yinzhen. Study on the Tectonic Ore-Controlling Characteristics of the Jiudian Gold Deposit in Jiaodong[J]. Contributions to Geology and Mineral Resources Research, 1988(2): 38−46.
[48] 张潮, 刘育, 刘向东, 等. 胶西北新城金矿床硫同位素地球化学[J]. 岩石学报, 2014, 30(9): 2495−2506.
ZHANG Chao, LIU Yu, LIU Xiangdong, et al. Characteristics of Sulfur Isotope Geochemistry of the Xincheng Gold Deposit, Northwest Jiaodong, China[J]. Acta Petrologica Sinica, 2014, 30(9): 2495−2506.
[49] 张德会. 流体的沸腾和混合在热液成矿中的意义[J]. 地球科学进展, 1997(6): 49−55.
ZHANG Dehui. Significance of Fluid Boiling and Mixing in Hydrothermal Metallogenesis[J]. Advances in Earth Science, 1997(6): 49−55.
[50] 张竹如, 陈世桢. 胶东金成矿域胶莱盆地中超大型金矿床找矿远景[J]. 地球化学, 1999(3): 203−212.
ZHANG Zhuru, CHEN Shizhen. Prospecting Prospects for Super-Large Gold Deposits in the Jiaolai Basin of the Jiaodong Gold Metallogenic Province[J]. Geochimica, 1999(3): 203−212.
[51] Bi S J, Zhao X F. 40Ar/39Ar dating of the Jiehe gold deposit in the Jiaodong Peninsula, eastern North China Craton: Implications for regional gold metallogeny[J]. Ore Geology Reviews, 2017, 86: 639−651. doi: 10.1016/j.oregeorev.2017.03.027
[52] Chen Y, Li H, Wang W, et al. Tectonic transition during the Jurassic-Cretaceous in the Jiaodong Peninsula, North China: insights from asynchronous adakitic and A-type granitic plutons[J]. International Geology Review, 2024, 66(9): 1743−64.
[53] Cho D, Lee T, Takahashi Y, et al. Zircon U-Pb geochronology and Hf isotope geochemistry of magmatic and metamorphic rocks from the Hida Belt, southwest Japan[J]. Geoscience Frontiers, 2021, 12(4): 189−205.
[54] Clayton R N, O'Neil J R, Mayeda T K. Oxygen isotope exchange between quartz and water[J]. Journal of Geophysical research, 1972, 77(17): 3057−67. doi: 10.1029/JB077i017p03057
[55] Deng J, Qiu K F, Wang Q F, et al. In-situ dating of hydrothermal monazite andimplications on the geodynamic controls of ore formation in theJiaodong gold province, eastern China[J]. Economic Geology, 2020, 115(3): 671−685. doi: 10.5382/econgeo.4711
[56] Deng J, Wang Q F, Zhang L, et al. Metallogenetic model of Jiaodong-type gold deposits, eastern China[J]. Science China Earth Sciences, 2023, 66(10): 2287−2310. doi: 10.1007/s11430-022-1136-4
[57] Du J, Du Y, Wang G, Wu C, et al. Gold mineralisation by pyrite recrystallisation and arsenopyrite sequestration in the Jiaochong Au deposit, Tongling ore district, eastern China: Implications for the formation of stratabound ore deposits[J]. Ore Geology Reviews. 2024: 105955.
[58] Du Z Z, Cheng Z Z, Yao X F, et al. Two-stage superimposed gold mineralization in the xiejiagou gold deposit, shandong province: insights from fluid inclusions, H-O-S isotopes, and trace elements[J]. Minerals, 2023, 13(9): 26.
[59] Goss S C, Wilde S A, Wu F, et al. The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shandong Province, North China Craton[J]. Lithos, 2010, 120(3-4): 309−326. doi: 10.1016/j.lithos.2010.08.019
[60] Li L, Li S R, Santosh M, et al. Dyke swarms and their role in the genesis of world-class gold deposits: Insights from the Jiaodong peninsula, China[J]. Journal of Asian Earth Sciences, 2016, 130: 2−2. doi: 10.1016/j.jseaes.2016.06.015
[61] Liu J, Wang J, Liu Y, et al. Ore genesis of the Xiadian gold deposit, Jiaodong Peninsula, East China: Information from fluid inclusions and mineralization[J]. Geological Journal, 2018, 53: 77−95. doi: 10.1002/gj.3042
[62] Liu X D, Ding Z J, Song M C, et al. Geology and mineralization of the Dayin'gezhuang supergiant gold deposit(180 t) in the Jiaodong Peninsula, China: A review[J]. China Geology, 2022(4): 696−721.
[63] Ma W D, Fan H R, Liu X, et al. Geochronological framework of the Xiadian gold deposit in the Jiao dong Province, China: Implications for the timing of gold mineralization[J]. Ore Geology Reviews, 2017, 86(1): 196−211.
[64] Qiu K F, Deng J, Laflamme C, et al. Giant Mesozoic gold ores derived from subducted oceanic slab and overlying sediments[J]. Geochimica et Cosmochimica Acta, 2023, 343: 133−141.
[65] Sharp Z D, Gibbons J A, Maltsen O, et al. A calibration of the triple oxygen isotope fractionation in the SiO2-H2O system and applications to natural samples[J]. Geochimica Et Cosmochimica Acta Journal of the Geochemical Society & the Meteoritical Society, 2016, 186: 105−119.
[66] Song M C, Zhou J B, Song Y X, et al. Mesozoic Weideshan granitoid suite and its relationship to large-scale gold mineralization in the Jiaodong Peninsula, China[J]. Geological Journal, 2020, 55(8): 5703−5724. doi: 10.1002/gj.3607
[67] Sun W P, Feng Y X, Lai C, et al. A high-efficiency gold precipitation model associated with Fe carbonates: Example from the Jiudian deposit of the world-class Jiaodong gold province[J]. Ore Geology Reviews, 2022, 145: 104894. doi: 10.1016/j.oregeorev.2022.104894
[68] Tian R C, Li D P, Tian J P, et al. Genesis of the Jiudian gold deposit, Jiaodong Peninsula, eastern China: Fluid inclusion and CHO-Pb isotope constraints[J]. Ore Geology Reviews, 2022, 149: 105086. doi: 10.1016/j.oregeorev.2022.105086
[69] Wang Y H, Zhang F F, Liu J J, et al. Genesis of the Fuxing porphyry Cu deposit in Eastern Tianshan, China: Evidence from fluid inclusions and C-H-O-S-Pb isotope systematics[J]. Ore Geology Reviews, 2016, 79: 46−61. doi: 10.1016/j.oregeorev.2016.04.022
[70] Wang B, Ding Z J, Bao Z Y, et al. Mesozoic Magmatic and Geodynamic Evolution in the Jiaodong Peninsula, China: Implications for the Gold and Polymetallic Mineralization[J]. Minerals, 2022, 12(9): 1073. doi: 10.3390/min12091073
[71] Wang Q F, Liu X F, Yin R S, et al. Metasomatized mantle sources for orogenic gold deposits hosted in high-grade metamorphic rocks: Evidence from Hg isotopes[J]. Geology, 2024, 52(2): 115−9. doi: 10.1130/G51593.1
[72] Wen B J, Fan H R, Hu F F, et al. Fluid evolution and ore genesis of the giant Sanshandao gold deposit, Jiaodong gold province, China: Constrains from geology, fluid inclusions and H-O-S-He-Ar isotopic compositions[J]. Journal of Geochemical Exploration, 2016, 171: 96−112. doi: 10.1016/j.gexplo.2016.01.007
[73] Wen B J, Fan H R, Santosh M, et al. Genesis of two different types of gold mineralization in the Linglong gold field, China: Constrains from geology, fluid inclusions and stable isotope[J]. Ore Geology Reviews, 2015, 65: 643−58. doi: 10.1016/j.oregeorev.2014.03.018
[74] Xiong L, Zhao X F, Wei J B, et al. Linking Mesozoic lode gold deposits to metalfertilized lower continental crust in the North China Craton: Evidence from Pb isotope systematics[J]. Chemical Geology, 2020, 533: 119440. doi: 10.1016/j.chemgeo.2019.119440
[75] Yang L Q, Deng J, Guo C Y, et al. Ore-forming fluid characteristics of the Dayingezhuang gold deposit, Jiaodong Gold Province, China[J]. Resource Geology, 2010, 59(2): 181−193.
[76] Yang L Q, Deng J, Wang Z L, et al. Relationships Between Gold and Pyrite at the Xincheng Gold Deposit, Jiaodong Peninsula, China: Implications for Gold Source and Deposition in a Brittle Epizonal Environment[J]. Economic Geology, 2016, 111(1): 105−126. doi: 10.2113/econgeo.111.1.105
[77] Yang L Q, Dilek Y, Wang Z L, et al. Late Jurassic, high Ba-Sr Linglong granites in the Jiaodong Peninsula, East China: lower crustal melting products in the eastern North China Craton[J]. Geological Magazine, 2017, 1−23.
[78] Yang Q Y, Santosh M. Early Cretaceous magma flare-up and its implications on gold mineralization in the Jiaodong Peninsula, China[J]. Ore Geology Reviews, 2015, 65: 626−642. doi: 10.1016/j.oregeorev.2014.01.004
[79] Yuan Z Z, Li Z K, Zhao X F, et al. New constraints on the genesis of the giant Dayingezhuang gold (silver) deposit in the Jiaodong district, North China Craton[J]. Ore Geology Reviews, 2019, 112: 103038. doi: 10.1016/j.oregeorev.2019.103038
[80] Zhang L, Weinberg R F, Yang L Q, et al. Mesozoic orogenic gold mineralization in the Jiaodong Peninsula, China: A focused event at 120±2 Ma during cooling of pregold granite intrusions[J]. Economic Geology, 2020, 115(2): 415−441. doi: 10.5382/econgeo.4716
[81] Zhang J Y, Qiu K F, Yin R S, et al. Lithospheric mantle as a metal storage reservoir for orogenic gold deposits in active continental margins: Evidence from Hg isotopes[J]. Geology, 2024, 52(6): 423−8. doi: 10.1130/G51871.1
-