氨基功能化硅砂对含磷污水吸附效果

徐平平, 秦毅. 氨基功能化硅砂对含磷污水吸附效果[J]. 矿产综合利用, 2025, 46(3): 90-96. doi: 10.12476/kczhly.202208120515
引用本文: 徐平平, 秦毅. 氨基功能化硅砂对含磷污水吸附效果[J]. 矿产综合利用, 2025, 46(3): 90-96. doi: 10.12476/kczhly.202208120515
XU Pingping, QIN Yi. Adsorption Effect of Amino-functionalized Silica Sand on Phosphorus-containing Wastewater[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(3): 90-96. doi: 10.12476/kczhly.202208120515
Citation: XU Pingping, QIN Yi. Adsorption Effect of Amino-functionalized Silica Sand on Phosphorus-containing Wastewater[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(3): 90-96. doi: 10.12476/kczhly.202208120515

氨基功能化硅砂对含磷污水吸附效果

详细信息
    作者简介: 徐平平(1981-),女,硕士,副教授,研究方向为污水处理技术、水质净化技术
  • 中图分类号: TD989

Adsorption Effect of Amino-functionalized Silica Sand on Phosphorus-containing Wastewater

  • 通过包覆、功能化的硅砂,使得硅砂的吸附效率得到大幅度提升,开展关于含磷废水中磷物质的静态和动态吸附实验,分析氨基功能化硅砂的静态和动态吸附效果,并通过FT-IR实验分析氨基功能化硅砂对磷的吸附机理。结果表明:将初始溶液浓度定为0.5 g/L,吸附温度定为60 ℃,吸附剂颗粒直径定为0.5~1.0 mm,吸附时间定为16 h,氨吸附剂掺量定为8 g/L时,静态吸附效果较佳。氨基功能化的硅砂移动速率定为4.5 cm/h,初始溶液浓度定为1.0 g/L,吸附层高度定为60 cm,污水流动速率定为0.15 L/h时动态吸附效果较佳且经济。

  • 加载中
  • 图 1  吸附实验流程

    Figure 1. 

    图 2  不同氨基功能化硅砂掺量作用下吸附率的变化规律

    Figure 2. 

    图 3  不同吸附时间作用下吸附率的变化规律

    Figure 3. 

    图 4  不同吸附剂颗粒尺寸作用下吸附率的变化规律

    Figure 4. 

    图 5  不同温度作用下吸附率的变化规律

    Figure 5. 

    图 6  不同初始溶液浓度作用下吸附率的变化规律

    Figure 6. 

    图 7  不同初始溶液浓度和动态穿透时间作用下的变化规律

    Figure 7. 

    图 8  不同吸附层高度和动态穿透时间作用下的变化规律

    Figure 8. 

    图 9  不同污水流动速率和动态穿透时间作用下的变化规律

    Figure 9. 

    图 10  不同氨基功能化的硅砂移动速率和动态穿透时间作用下的变化规律

    Figure 10. 

    图 11  吸附前后FT-IR光谱

    Figure 11. 

  • [1]

    张志剑, 王珂, 朱荫湄, 等. 浙北水稻主产区田间土水磷素流失潜能[J]. 环境科学, 2001, 22(1):98-101.ZHANG Z J, WANG K, ZHU Y M, et al. Phosphorus loss potential of soil-water in sites of main rice-yield area in northern Zhejiang[J]. Environmental Science, 2001, 22(1):98-101.

    ZHANG Z J, WANG K, ZHU Y M, et al. Phosphorus loss potential of soil-water in sites of main rice-yield area in northern Zhejiang[J]. Environmental Science, 2001, 22(1):98-101.

    [2]

    徐洁, 陈海燕, 王旋. 碱改性粉煤灰处理含铬废水[J]. 矿产综合利用, 2016(6):68-71.XU J, CHEN H Y, WANG X, et al. Treatment of chromium containing wastewater by alkali modified fly ash[J]. Multipurpose Utilization of Mineral Resources, 2016(6):68-71. doi: 10.3969/j.issn.1000-6532.2016.06.016

    XU J, CHEN H Y, WANG X, et al. Treatment of chromium containing wastewater by alkali modified fly ash[J]. Multipurpose Utilization of Mineral Resources, 2016(6):68-71. doi: 10.3969/j.issn.1000-6532.2016.06.016

    [3]

    程俊伟, 黄明琴, 蔡深文. 碱洗-氧化钙煅烧两段法改性粉煤灰脱除废水中Cr(VI)的性能研究[J]. 矿产综合利用, 2022(1):184-189.CHENG J W, HUANG M Q, CAI S W. Research on removal of chromium (VI) from waste water on fly ash modified with alkali washing and calcium oxide calcining method[J]. Multipurpose Utilization of Mineral Resources, 2022(1):184-189. doi: 10.3969/j.issn.1000-6532.2022.01.026

    CHENG J W, HUANG M Q, CAI S W. Research on removal of chromium (VI) from waste water on fly ash modified with alkali washing and calcium oxide calcining method[J]. Multipurpose Utilization of Mineral Resources, 2022(1):184-189. doi: 10.3969/j.issn.1000-6532.2022.01.026

    [4]

    贺龙强, 付克明, 胡鹏. 改性粉煤灰处理废水中铬(VI) 的研究[J]. 煤炭技术, 2018, 37(7):324-326.HE L Q, FU K M, HU P, et al. Removal of chromium(VI) from wastewater by modified fly ash[J]. Coal Technology, 2018, 37(7):324-326.

    HE L Q, FU K M, HU P, et al. Removal of chromium(VI) from wastewater by modified fly ash[J]. Coal Technology, 2018, 37(7):324-326.

    [5]

    闫玉兵. 改性粉煤灰对含磷废水的处理研究进展[J]. 矿产综合利用, 2020(5):34-44.YAN Y B. Research on modified fly ash treats for phosphorus wastewater[J]. Multipurpose Utilization of Mineral Resources, 2020(5):34-44. doi: 10.3969/j.issn.1000-6532.2020.05.004

    YAN Y B. Research on modified fly ash treats for phosphorus wastewater[J]. Multipurpose Utilization of Mineral Resources, 2020(5):34-44. doi: 10.3969/j.issn.1000-6532.2020.05.004

    [6]

    周建, 陈小凤, 尹砾珩, 等. 以炉渣为载体处理重金属废水的吸附研究[J]. 环境科学导刊, 2018, 37(2):81-84.ZHOU J, CHEN X F, YIN L H, et al. Study on the adsorption of heavy metal wastewater with slag as carrier[J]. Environmental Science Review, 2018, 37(2):81-84.

    ZHOU J, CHEN X F, YIN L H, et al. Study on the adsorption of heavy metal wastewater with slag as carrier[J]. Environmental Science Review, 2018, 37(2):81-84.

    [7]

    刘立华, 杨正池, 赵露. 重金属吸附材料的研究进展[J]. 中国材料进展, 2018, 37(2):100-108+125.LIU L H, YANG Z C, ZHAO L. Research progress of heavy metal adsorption materials[J]. China Materials Progress, 2018, 37(2):100-108+125. doi: 10.7502/j.issn.1674-3962.2018.02.04

    LIU L H, YANG Z C, ZHAO L. Research progress of heavy metal adsorption materials[J]. China Materials Progress, 2018, 37(2):100-108+125. doi: 10.7502/j.issn.1674-3962.2018.02.04

    [8]

    韩永华, 刘文礼, 陈建华, 等. 羟基钙在高岭石两种(001)晶面的吸附机理[J]. 煤炭学报, 2016, 41(2): 743-750HAN Y H, LIU W L, CHEN J H, et al. Adsorption mechanism of hydroxycalcium on two (001) crystal planes of kaolinite[J]. Journal of China Coal Society, 2016, 41(2): 743-750.

    HAN Y H, LIU W L, CHEN J H, et al. Adsorption mechanism of hydroxycalcium on two (001) crystal planes of kaolinite[J]. Journal of China Coal Society, 2016, 41(2): 743-750.

    [9]

    CHEN F, ZENG S, LUO Z, et al. A novel MBBR–MFC integrated system for high-strength pulp/paper wastewater treatment and bioelectricity generation[J]. Separation Science & Technology, 2019: 1-10.

    [10]

    CHENG J, LI H, DING L, et al. Improving hydrogen and methane co-generation in cascading dark fermentation and anaerobic digestion: the effect of magnetite nanoparticles on microbial electron transfer and syntrophism[J]. Chemical Engineering Journal, 2020, 397:125394. doi: 10.1016/j.cej.2020.125394

  • 加载中

(11)

计量
  • 文章访问数:  41
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2022-08-12
刊出日期:  2025-06-25

目录