Adsorption Effect of Amino-functionalized Silica Sand on Phosphorus-containing Wastewater
-
摘要:
通过包覆、功能化的硅砂,使得硅砂的吸附效率得到大幅度提升,开展关于含磷废水中磷物质的静态和动态吸附实验,分析氨基功能化硅砂的静态和动态吸附效果,并通过FT-IR实验分析氨基功能化硅砂对磷的吸附机理。结果表明:将初始溶液浓度定为0.5 g/L,吸附温度定为60 ℃,吸附剂颗粒直径定为0.5~1.0 mm,吸附时间定为16 h,氨吸附剂掺量定为8 g/L时,静态吸附效果较佳。氨基功能化的硅砂移动速率定为4.5 cm/h,初始溶液浓度定为1.0 g/L,吸附层高度定为60 cm,污水流动速率定为0.15 L/h时动态吸附效果较佳且经济。
Abstract:The adsorption efficiency of silica sand was greatly improved by coating and functionalized silica sand. The static and dynamic adsorption tests of phosphorus substances in phosphorus-containing wastewater were carried out, and the static and dynamic adsorption effects of amino-functional silica sand were analyzed. The adsorption mechanism of amino-functional silica sand on phosphorus was analyzed by FT-IR test.The results showed when the initial solution concentration is 0.5 g/L, the adsorption temperature is 60 ℃, the diameter of adsorbent particles is 0.5~1.0 mm, the adsorption time is 16 h, and the content of amino-functionalized silica sand is 8 g/L. The static adsorption effect is the best. The moving rate of amino-functionalized silica sand is set as 4.5 cm/h, the initial solution concentration is set as 1.0 g/L, the height of adsorption layer is set as 60 cm, and the flow rate of wastewater is set as 0.15 L/h, the dynamic adsorption effect is best and economical.
-
-
[1] 张志剑, 王珂, 朱荫湄, 等. 浙北水稻主产区田间土水磷素流失潜能[J]. 环境科学, 2001, 22(1):98-101.ZHANG Z J, WANG K, ZHU Y M, et al. Phosphorus loss potential of soil-water in sites of main rice-yield area in northern Zhejiang[J]. Environmental Science, 2001, 22(1):98-101.
ZHANG Z J, WANG K, ZHU Y M, et al. Phosphorus loss potential of soil-water in sites of main rice-yield area in northern Zhejiang[J]. Environmental Science, 2001, 22(1):98-101.
[2] 徐洁, 陈海燕, 王旋. 碱改性粉煤灰处理含铬废水[J]. 矿产综合利用, 2016(6):68-71.XU J, CHEN H Y, WANG X, et al. Treatment of chromium containing wastewater by alkali modified fly ash[J]. Multipurpose Utilization of Mineral Resources, 2016(6):68-71. doi: 10.3969/j.issn.1000-6532.2016.06.016
XU J, CHEN H Y, WANG X, et al. Treatment of chromium containing wastewater by alkali modified fly ash[J]. Multipurpose Utilization of Mineral Resources, 2016(6):68-71. doi: 10.3969/j.issn.1000-6532.2016.06.016
[3] 程俊伟, 黄明琴, 蔡深文. 碱洗-氧化钙煅烧两段法改性粉煤灰脱除废水中Cr(VI)的性能研究[J]. 矿产综合利用, 2022(1):184-189.CHENG J W, HUANG M Q, CAI S W. Research on removal of chromium (VI) from waste water on fly ash modified with alkali washing and calcium oxide calcining method[J]. Multipurpose Utilization of Mineral Resources, 2022(1):184-189. doi: 10.3969/j.issn.1000-6532.2022.01.026
CHENG J W, HUANG M Q, CAI S W. Research on removal of chromium (VI) from waste water on fly ash modified with alkali washing and calcium oxide calcining method[J]. Multipurpose Utilization of Mineral Resources, 2022(1):184-189. doi: 10.3969/j.issn.1000-6532.2022.01.026
[4] 贺龙强, 付克明, 胡鹏. 改性粉煤灰处理废水中铬(VI) 的研究[J]. 煤炭技术, 2018, 37(7):324-326.HE L Q, FU K M, HU P, et al. Removal of chromium(VI) from wastewater by modified fly ash[J]. Coal Technology, 2018, 37(7):324-326.
HE L Q, FU K M, HU P, et al. Removal of chromium(VI) from wastewater by modified fly ash[J]. Coal Technology, 2018, 37(7):324-326.
[5] 闫玉兵. 改性粉煤灰对含磷废水的处理研究进展[J]. 矿产综合利用, 2020(5):34-44.YAN Y B. Research on modified fly ash treats for phosphorus wastewater[J]. Multipurpose Utilization of Mineral Resources, 2020(5):34-44. doi: 10.3969/j.issn.1000-6532.2020.05.004
YAN Y B. Research on modified fly ash treats for phosphorus wastewater[J]. Multipurpose Utilization of Mineral Resources, 2020(5):34-44. doi: 10.3969/j.issn.1000-6532.2020.05.004
[6] 周建, 陈小凤, 尹砾珩, 等. 以炉渣为载体处理重金属废水的吸附研究[J]. 环境科学导刊, 2018, 37(2):81-84.ZHOU J, CHEN X F, YIN L H, et al. Study on the adsorption of heavy metal wastewater with slag as carrier[J]. Environmental Science Review, 2018, 37(2):81-84.
ZHOU J, CHEN X F, YIN L H, et al. Study on the adsorption of heavy metal wastewater with slag as carrier[J]. Environmental Science Review, 2018, 37(2):81-84.
[7] 刘立华, 杨正池, 赵露. 重金属吸附材料的研究进展[J]. 中国材料进展, 2018, 37(2):100-108+125.LIU L H, YANG Z C, ZHAO L. Research progress of heavy metal adsorption materials[J]. China Materials Progress, 2018, 37(2):100-108+125. doi: 10.7502/j.issn.1674-3962.2018.02.04
LIU L H, YANG Z C, ZHAO L. Research progress of heavy metal adsorption materials[J]. China Materials Progress, 2018, 37(2):100-108+125. doi: 10.7502/j.issn.1674-3962.2018.02.04
[8] 韩永华, 刘文礼, 陈建华, 等. 羟基钙在高岭石两种(001)晶面的吸附机理[J]. 煤炭学报, 2016, 41(2): 743-750HAN Y H, LIU W L, CHEN J H, et al. Adsorption mechanism of hydroxycalcium on two (001) crystal planes of kaolinite[J]. Journal of China Coal Society, 2016, 41(2): 743-750.
HAN Y H, LIU W L, CHEN J H, et al. Adsorption mechanism of hydroxycalcium on two (001) crystal planes of kaolinite[J]. Journal of China Coal Society, 2016, 41(2): 743-750.
[9] CHEN F, ZENG S, LUO Z, et al. A novel MBBR–MFC integrated system for high-strength pulp/paper wastewater treatment and bioelectricity generation[J]. Separation Science & Technology, 2019: 1-10.
[10] CHENG J, LI H, DING L, et al. Improving hydrogen and methane co-generation in cascading dark fermentation and anaerobic digestion: the effect of magnetite nanoparticles on microbial electron transfer and syntrophism[J]. Chemical Engineering Journal, 2020, 397:125394. doi: 10.1016/j.cej.2020.125394
-