Experimental Study on Heating Performance of Electric Heating Plate Prepared from Graphite Solid Waste
-
摘要:
我国石墨消费量的不断增长导致石墨固废总量持续增加,其堆存在占用大量土地的同时,也会对环境造成破坏。为了帮助解决该问题,利用不同类型以及配比的石墨固废包括开采废石、球形石墨尾料等制备了电热板材,给电热板材原料的选择提供了新思路。通过实验得出了石墨固废制备电热板材发热性能随输入电压和石墨尾料掺量的变化规律,并验证了其长期工作的可靠性。实验结果表明,在输入电压大于24 V时,电热板材的发热性能较好;球形石墨尾料掺量越大,电热板材的输出功率越高;循环升温降温270次后,电热板材体积电阻率仍变化较小,可长期稳定使用。
Abstract:The continuous growth of graphite consumption in China has led to the continuous increase of the total amount of graphite solid waste, which will not only occupy space, but also cause damage to the environment. In order to help solve this problem, electric heating plates were prepared by using different forms and proportions of graphite solid waste, including mining waste rock and spherical graphite tailings, which provided a new idea for the selection of raw materials for electric heating plates. Through experiments, the variation law of heating performance of electric heating plates prepared by graphite solid waste with input voltage and graphite tailings content was preliminarily obtained, and the reliability of its long-term work was verified. The test results show that the heating performance of the electric heating plate is better when the input voltage is greater than 24 V. The higher the spherical graphite tailings are, the higher the output power of the electric heating plate is. After 270 cycles of heating, the volume resistivity of the heating plate still changed little, which shows that it can be used for a long time.
-
-
表 1 破碎后石墨开采废石级配
Table 1. Grading of waste rock from graphite mining
粒级/mm +4.75 +2.36 +1.18 +0.6 +0.3 +0.15 +0.075 合计 累积筛余/% 3.36 55.47 75.37 82.35 86.50 91.65 96.31 100.00 表 3 球形石墨尾料化学成分的XRF分析结果/%
Table 3. XRF analysis results of spherical graphite tailings
SiO2 Al2O3 Fe2O3 SO3 MgO CaO K2O TiO2 CuO MnO PbO MoO3 固定碳 烧失量 1.89 0.65 0.64 0.55 0.27 0.15 0.13 0.01 0.006 0.005 0.004 0.004 94.35 95.69 表 2 石墨开采废石化学成分的XRF分析结果/%
Table 2. XRF analysis results of graphite mining waste rocks
SiO2 Al2O3 Fe2O3 SO3 CaO K2O MgO Na2O TiO2 P2O5 64.18 12.35 3.96 3.30 3.00 2.76 2.52 1.05 0.48 0.18 CeO2 BaO V2O5 MnO ZrO2 SrO ZnO Rb2O Y2O3 烧失量 0.13 0.12 0.053 0.045 0.016 0.016 0.014 0.012 0.004 5.82 -
[1] 周绍奇, 伏少鹏, 卜祥宁, 等. 超声乳化煤油乳滴尺寸对泡沫性质及隐晶质石墨浮选的影响[J]. 矿产综合利用, 2020(2):182-187.ZHOU S Q, FU S P, BU X N, et al. Effect of droplet size of ultrasonic emulsification kerosene emulsion on foam properties and the flotation of ccryptocrystalline graphite[J]. Multipurpose Utilization of Mineral Resources, 2020(2):182-187. doi: 10.3969/j.issn.1000-6532.2020.02.033
ZHOU S Q, FU S P, BU X N, et al. Effect of droplet size of ultrasonic emulsification kerosene emulsion on foam properties and the flotation of ccryptocrystalline graphite[J]. Multipurpose Utilization of Mineral Resources, 2020(2):182-187. doi: 10.3969/j.issn.1000-6532.2020.02.033
[2] 李飞, 高伦, 彭成龙, 等. 小鳞片膨胀石墨的制备及电化学性能[J]. 矿产综合利用, 2022(2):154-157.LI F, GAO L, PENG C L, et al. Preparation and electrochemical properties of small flake expanded graphite[J]. Multipurpose Utilization of Mineral Resources, 2022(2):154-157. doi: 10.3969/j.issn.1000-6532.2022.02.028
LI F, GAO L, PENG C L, et al. Preparation and electrochemical properties of small flake expanded graphite[J]. Multipurpose Utilization of Mineral Resources, 2022(2):154-157. doi: 10.3969/j.issn.1000-6532.2022.02.028
[3] 蔚美娇, 孔祥云, 黄劲松, 等. 我国尾矿固废处置现状及建议[J]. 化工矿物与加工, 2022, 51(1):34-38.WEI M J, KONG X Y. HUANG J S, et al. Status of disposal of tailings as a solid waste and suggestions in China[J]. Industrial Minerals & Processing, 2022, 51(1):34-38.
WEI M J, KONG X Y. HUANG J S, et al. Status of disposal of tailings as a solid waste and suggestions in China[J]. Industrial Minerals & Processing, 2022, 51(1):34-38.
[4] 秦玲玲, 杨海舟, 陈建平. 尾矿综合利用充填采空区现状及展望[J]. 广东化工, 2018, 45(16):130-131.QIN L L, YANG H Z, CHEN J P. Application actuality and foreground of tailings filling technology[J]. Guangdong Chemical Industry, 2018, 45(16):130-131. doi: 10.3969/j.issn.1007-1865.2018.16.057
QIN L L, YANG H Z, CHEN J P. Application actuality and foreground of tailings filling technology[J]. Guangdong Chemical Industry, 2018, 45(16):130-131. doi: 10.3969/j.issn.1007-1865.2018.16.057
[5] 左正, 杨晶, 胡昱, 等. 导电混凝土应用于建筑采暖工程的计算方法[J]. 土木建筑与环境工程, 2013, 35(4): 139-144.ZUO Z, YANG J, HU Y, et al. Numerical computing method of conductive concrete applied in construction heating engineering[J]. Journal of Civil, Architectural & Environmental Engineering, 2013, 35(4): 139-144.
ZUO Z, YANG J, HU Y, et al. Numerical computing method of conductive concrete applied in construction heating engineering[J]. Journal of Civil, Architectural & Environmental Engineering, 2013, 35(4): 139-144.
[6] 王丽娜, 申保磊. 石墨矿尾矿制备路面砖面层的试验研究[J]. 中国非金属矿工业导刊, 2012(5):24-27.WANG L N, SHEN B L. Experimental study on preparation of the surface of pavement brick layer using graphite tailings[J]. China Non-metallic Minerals Industry, 2012(5):24-27. doi: 10.3969/j.issn.1007-9386.2012.05.009
WANG L N, SHEN B L. Experimental study on preparation of the surface of pavement brick layer using graphite tailings[J]. China Non-metallic Minerals Industry, 2012(5):24-27. doi: 10.3969/j.issn.1007-9386.2012.05.009
[7] 刘宇彬, 陈霖华, 徐志强, 等. 石墨碳纤维导电混凝土制备及接地特性研究[J]. 混凝土与水泥制品, 2018(8):52-55.LIU Y B, CHEN L H, XU Z Q, et al. Study on preparation and grounding characteristics of graphite-carbon fiber electrically conductive concrete[J]. China Concrete and Cement Products, 2018(8):52-55. doi: 10.3969/j.issn.1000-4637.2018.08.013
LIU Y B, CHEN L H, XU Z Q, et al. Study on preparation and grounding characteristics of graphite-carbon fiber electrically conductive concrete[J]. China Concrete and Cement Products, 2018(8):52-55. doi: 10.3969/j.issn.1000-4637.2018.08.013
[8] 翁余斌. 基于离子导电的水泥基复合材料性能研究[D]. 广州: 广州大学, 2019.WENG Y B. Study on properties of cement-based composites based on ion conduction [D]. Guangzhou: Guangzhou University, 2019.
WENG Y B. Study on properties of cement-based composites based on ion conduction [D]. Guangzhou: Guangzhou University, 2019.
[9] 饶瑞, 陈洋臣, 刘春晖, 等. 电流及电压对钢纤维石墨导电混凝土电阻率的影响[J]. 混凝土与水泥制品, 2017(2):50-54.RAO R, CHEN Y C, LIU C H, et al. Effect of current and voltage on resistivity of steel fiber graphite electric conductive concrete[J]. China Concrete and Cement Products, 2017(2):50-54. doi: 10.3969/j.issn.1000-4637.2017.02.011
RAO R, CHEN Y C, LIU C H, et al. Effect of current and voltage on resistivity of steel fiber graphite electric conductive concrete[J]. China Concrete and Cement Products, 2017(2):50-54. doi: 10.3969/j.issn.1000-4637.2017.02.011
[10] 刘建国. 三相复合导电混凝土用于道路及桥面融雪化冰的研究[D]. 西安: 长安大学, 2014.LIU J G. Research on three-phase composite conductive concrete for road and bridge deck deicing[D]. Xi’an: Chang'an University, 2014.
LIU J G. Research on three-phase composite conductive concrete for road and bridge deck deicing[D]. Xi’an: Chang'an University, 2014.
[11] 宿静. 炭黑替代碳纤维对混凝土电、热及力学性能的影响[J]. 混凝土, 2018(6):97-100.SU J. Effect of carbon black instead of carbon fiber on the electrical, thermal and mechanical properties of concrete[J]. Concrete, 2018(6):97-100. doi: 10.3969/j.issn.1002-3550.2018.06.024
SU J. Effect of carbon black instead of carbon fiber on the electrical, thermal and mechanical properties of concrete[J]. Concrete, 2018(6):97-100. doi: 10.3969/j.issn.1002-3550.2018.06.024
[12] 郭佩, 崔学民, 林朝旭, 等. 地聚物基碳系电热涂料的制备与性能研究[J]. 陶瓷学报, 2019, 40(4): 469-476.GUO P, CUI X M, LIN C X, et al. Study on preparation of geopolymer-carbon based electrothermal coatings and its performances[J] Journal of Ceramics, 2019, 40(4): 469-476.
GUO P, CUI X M, LIN C X, et al. Study on preparation of geopolymer-carbon based electrothermal coatings and its performances[J] Journal of Ceramics, 2019, 40(4): 469-476.
[13] 谭忆秋, 刘凯, 王英园. 碳纤维/石墨烯导电沥青混凝土的非线性伏安特性[J]. 建筑材料学报, 2019, 22(2):278-283.TAN Y Q, LIU K, WANG Y Y. Nonlinear voltammetric characteristics of carbon fiber/graphene conductive asphalt concrete[J]. Journal of Building Materials, 2019, 22(2):278-283. doi: 10.3969/j.issn.1007-9629.2019.02.018
TAN Y Q, LIU K, WANG Y Y. Nonlinear voltammetric characteristics of carbon fiber/graphene conductive asphalt concrete[J]. Journal of Building Materials, 2019, 22(2):278-283. doi: 10.3969/j.issn.1007-9629.2019.02.018
[14] XIANG Z D, CHEN T, LI Z M, et al. Negative temperature coefficient of resistivity in lightweight conductive carbon nanotube/polymer composites[J]. Macromolecular Materials and Engineering, 2009: 294(2): 91–95.
-