Mechanical Properties and Mechanism of Glass Fiber Reinforced Cement Base Filling Cement Mortar
-
摘要:
工业废渣的资源化利用是当前材料工程界的一个热点问题。采用玻璃纤维对水泥基充填砂浆力学性能进行增强,通过力学性能测试探讨了纤维掺量及长度对试件强度的影响规律,通过微观实验分析了玻璃纤维的作用机理。实验结果表明,玻璃纤维在水泥基充填砂浆中起到了加筋作用,抗压和抗折强度随纤维掺量增加先上升后降低,掺量为1.2%是强度增长的峰值,中等长度的玻璃纤维对强度的增强最有利;随着玻璃纤维掺量由0增加1.2%,试件的抗剪强度提升了75.7%,且发生剪切破坏时的脆性程度下降,结构完整性提高;玻璃纤维的“桥联作用”增强了水化凝胶体的黏结力和摩擦力,抑制了破坏裂缝的扩展,从而促进了力学性能的改善。本研究可为充填采矿工程的安全建设与玻璃废渣的资源化利用提供重要参考。
Abstract:The resource utilization of industrial waste slag is a hot issue in the field of material engineering. Glass fiber was used to enhance the mechanical properties of cement based filling mortar. Mechanical tests were carried out to explore the influence of fiber content and length on strength and the mechanism of glass fiber was analyzed through microscopic tests. The results show that the compressive and flextural strength of cement-based filling mortar first increases and then decreases with the increasing fiber content due to its reinforcement. The peak value of strength increase is 1.2%, and the middle length of glass fiber is the most beneficial to the strength enhancement. When the glass fiber content increases from 0 to 1.2%, the shear strength of the specimen increases by 75.7%, and the brittleness decreases when shear failure occurs, and the structural integrity is improved. The "bridging effect" of glass fiber enhances the adhesion force and friction force of hydration gel, inhibits the propagation of failure crack, and promotes the improvement of mechanical properties. This study can provide an important reference for the safe construction of backfill mining engineering and the resource utilization of glass waste residue.
-
Key words:
- glass fiber /
- backfilling mortar /
- mechanical properties /
- failure mode /
- mechanism
-
-
表 1 尾砂的主要化学成分/%
Table 1. Main chemical composition of test tailings
Al2O3 Fe2O3 MnO MgO CaO SO3 SiO2 TiO2 18.02 1.61 0.32 1.73 2.62 0.22 62.15 0.26 表 2 玻璃纤维基本物理性质
Table 2. Basic physical properties of glass fibers
纤维类型 单丝直径/μm 密度/(g/cm3) 延伸率/% 弹性模量/GPa 抗拉强度/MPa 耐酸碱性 分散性 玻璃纤维 8 2.13 39 5.02 398 强 好 表 3 试件的配合比设计
Table 3. Sample mix ratio design
实验编号 纤维长度/mm 纤维掺量/% F 1 5 0.3 F 2 0.6 F 3 0.9 F 4 1.2 F 5 1.5 F 6 10 0.3 F 7 0.6 F 8 0.9 F 9 1.2 F 10 1.5 F 11 20 0.3 F 12 0.6 F 13 0.9 F 14 1.2 F 15 1.5 -
[1] 马爱元, 郑雪梅, 李松, 等. 含锌钢铁冶金渣尘处理技术现状[J]. 矿产综合利用, 2020(4):1-7.MA A Y, ZHENG X M, LI S, et al. Current status of metallurgical slag dust treatment technology for Zn-containing iron and steel[J]. Multipurpose Utilization of Mineral Resources, 2020(4):1-7 doi: 10.3969/j.issn.1000-6532.2020.04.001
MA A Y, ZHENG X M, LI S, et al. Current status of metallurgical slag dust treatment technology for Zn-containing iron and steel[J]. Multipurpose Utilization of Mineral Resources, 2020(4):1-7 doi: 10.3969/j.issn.1000-6532.2020.04.001
[2] 柳晓娟, 侯华丽, 孙映祥, 等. 关于中国绿色矿业内涵与实现路径的思考[J]. 矿业研究与开发, 2021, 41(10):180-186.LIU X J, HOU H L, SUN Y X, et al. Thinking on the connotation and realization path of green mining in China[J]. Mining Research and Development, 2021, 41(10):180-186.
LIU X J, HOU H L, SUN Y X, et al. Thinking on the connotation and realization path of green mining in China[J]. Mining Research and Development, 2021, 41(10):180-186.
[3] 刘强, 周飞, 张俊瑾, 等. 硅锰渣-固硫灰复合辅助性胶凝材料水化机理研究[J]. 硅酸盐通报, 2022, 41(5): 1715-1723.LIU Q, ZHOU F, ZHANG J J, et al. Study on hydration mechanism of silicon-manganese slag and sulfur-fixing ash composite auxiliary cementing material [J]. Chinese Bulletin of Ceramics, 2012, 41(5): 1715-1723.
LIU Q, ZHOU F, ZHANG J J, et al. Study on hydration mechanism of silicon-manganese slag and sulfur-fixing ash composite auxiliary cementing material [J]. Chinese Bulletin of Ceramics, 2012, 41(5): 1715-1723.
[4] 张遵乾, 宫娟, 龙跃. 流变特性对冶金渣纤维化过程的影响机理研究[J]. 矿产综合利用, 2021(6):7-10+80.ZHANG Z G, GONG J, LONG Y. Study on the mechanism of rheological properties on the process of metallurgical slag fibrosis[J]. Multipurpose Utilization of Mineral Resources, 2021(6):7-10+80. doi: 10.3969/j.issn.1000-6532.2021.06.002
ZHANG Z G, GONG J, LONG Y. Study on the mechanism of rheological properties on the process of metallurgical slag fibrosis[J]. Multipurpose Utilization of Mineral Resources, 2021(6):7-10+80. doi: 10.3969/j.issn.1000-6532.2021.06.002
[5] CHEN T, LEI C, YAN B, et al. Metal recovery from the copper sulfide tailing with leaching and fractional precipitation technology[J]. Hydrometallurgy, 2014, 147:178-182.
[6] 张少辉, 王艳, 牛荻涛. 废旧纤维在水泥基材料中的应用研究进展[J]. 材料导报, 2020, 34(23): 23042-23050.ZHANG S H, WANG Y, NIU D T. Research progress of waste fiber in cement-based materials[J]. Materials Review, 20, 34(23): 23042-23050.
ZHANG S H, WANG Y, NIU D T. Research progress of waste fiber in cement-based materials[J]. Materials Review, 20, 34(23): 23042-23050.
[7] 冯驿, 何亚群, 王海锋, 等. 废旧线路板非金属组分中玻璃纤维的脱除研究[J]. 矿产综合利用, 2019(1):102-105.FENG Y, HE Y Q, WANG H F, et al. Study on removal of glass fiber from nonmetallic components of waste circuit boards[J]. Multipurpose Utilization of Mineral Resources, 2019(1):102-105. doi: 10.3969/j.issn.1000-6532.2019.01.022
FENG Y, HE Y Q, WANG H F, et al. Study on removal of glass fiber from nonmetallic components of waste circuit boards[J]. Multipurpose Utilization of Mineral Resources, 2019(1):102-105. doi: 10.3969/j.issn.1000-6532.2019.01.022
[8] 于伯和, 徐立新, 杨国斌, 等. 温压法制备碱矿渣复合摩擦材料性能研究[J]. 非金属矿, 2021, 44(2):53-56.YU B H, XU L X, YANG G B, et al. Study on properties of alkali slag composite friction materials prepared by warm pressing method[J]. Non-metallic Ores, 2021, 44(2):53-56. doi: 10.3969/j.issn.1000-8098.2021.02.014
YU B H, XU L X, YANG G B, et al. Study on properties of alkali slag composite friction materials prepared by warm pressing method[J]. Non-metallic Ores, 2021, 44(2):53-56. doi: 10.3969/j.issn.1000-8098.2021.02.014
[9] 辛鑫, 谭泽馨, 赵俊学, 等. 硅锰渣一步法制备微晶铸石的热处理工艺及性能[J]. 硅酸盐学报, 2022, 50(6):1677-1684.XIN X, TAN Z X, ZHAO J X, et al. Heat treatment technology and properties of microcrystalline cast stone prepared by one-step method with silicon-manganese slag[J]. Journal of the Chinese Ceramic Society, 2022, 50(6):1677-1684.
XIN X, TAN Z X, ZHAO J X, et al. Heat treatment technology and properties of microcrystalline cast stone prepared by one-step method with silicon-manganese slag[J]. Journal of the Chinese Ceramic Society, 2022, 50(6):1677-1684.
[10] BEHERA S K, GHOSH C N, MISHRA D P, et al. Strength development and microstructural investigation of lead-zinc mill tailings based paste backfill with fly ash as alternative binder[J]. Cement and Concrete Composites, 2020, 109.
[11] FALL M, POKHAREL M. Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills: Portland cement-paste backfill[J]. Cement and Concrete Composites, 2010, 32(10):819-828. doi: 10.1016/j.cemconcomp.2010.08.002
[12] 马国伟, 李之建, 易夏玮, 等. 纤维增强砂浆充填材料的宏细观试验[J]. 北京工业大学学报, 2016, 42(3):406-412.MA G W, LI Z J, YI X W, et al. Macro and micro test of fiber reinforced mortar filling material[J]. Journal of Beijing University of Technology, 2016, 42(3):406-412. doi: 10.11936/bjutxb2015040024
MA G W, LI Z J, YI X W, et al. Macro and micro test of fiber reinforced mortar filling material[J]. Journal of Beijing University of Technology, 2016, 42(3):406-412. doi: 10.11936/bjutxb2015040024
[13] 侯永强, 尹升华, 赵国亮, 等. 聚丙烯纤维增强尾砂胶结充填体力学及流动性能研究[J]. 材料导报, 2021, 35(19):19030-19035.HOU Y Q, YIN S H, ZHAO G L, et al. Study on the mechanics and flow properties of polypropylene fiber reinforced cemented tailings filling[J]. Materials Review, 2021, 35(19):19030-19035. doi: 10.11896/cldb.20080287
HOU Y Q, YIN S H, ZHAO G L, et al. Study on the mechanics and flow properties of polypropylene fiber reinforced cemented tailings filling[J]. Materials Review, 2021, 35(19):19030-19035. doi: 10.11896/cldb.20080287
[14] 徐文彬, 李乾龙, 田明明. 聚丙烯纤维加筋固化尾砂强度及变形特性[J]. 工程科学学报, 2019, 41(12):1618-1626.XU W B, LI G L, TIAN M M. Strength and deformation characteristics of reinforced polypropylene fiber cured tailings[J]. Chinese Journal of Engineering Science, 2019, 41(12):1618-1626.
XU W B, LI G L, TIAN M M. Strength and deformation characteristics of reinforced polypropylene fiber cured tailings[J]. Chinese Journal of Engineering Science, 2019, 41(12):1618-1626.
[15] 陶博识, 刘卫星. 掺纤维加筋水泥基充填材料力学性能及流动性能研究[J]. 矿业研究与开发, 2022, 42(3): 94-101.TAO B S, LIU W X. Study on mechanical properties and flow properties of fiber-doped reinforced cement base filling material [J]. Mining Research and Development, 2012, 42(3): 94-101.
TAO B S, LIU W X. Study on mechanical properties and flow properties of fiber-doped reinforced cement base filling material [J]. Mining Research and Development, 2012, 42(3): 94-101.
[16] XUE G L, YILMAZ E, SONG W D, et al. Influence of fiber reinforcement on mechanical behavior and microstructural properties of cemented tailings backfill[J]. Construction and Building Materials, 2019, 213:275-285. doi: 10.1016/j.conbuildmat.2019.04.080
-