Flotation Test of a High-grade Secondary Copper Sulfide Ore from Serbia
-
摘要:
针对塞尔维亚某高品位次生硫化铜矿石,结合矿石性质与浮选工艺特点,进行了磨矿细度、调整剂、捕收剂种类和用量、粗精矿再磨细度等一系列条件实验,确定了较佳工艺参数范围;采用铜优先浮选,粗精矿再磨再选的工艺流程,经过一次粗选、二次精选以及二次扫选的闭路流程实验,最终获得产率为8.3%,铜品位为25.87%、铜回收率为91.37%的铜精矿,铜精矿含金5.9 g/t,金回收率28.15%,铜精矿铜和金回收率指标在工艺矿物学预测范围内。推荐的工艺流程简单、指标优良,为该矿山开发提供了有力的数据支撑。
Abstract:In view of a high-grade secondary copper sulfide ore from Serbia, combined with ore properties and flotation process characteristics, a series of experiments on grinding fineness, regulator, depressant, collector species and their dosage, and regrinding fineness of rougher concentrate were carried out, and the optimum range of technological parameters was determined. The process flow of copper preferential flotation and regrinding and recleaning of rougher concentrate is adopted. Though the closed-circuit test of one roughing, two cleaning, and two scavening, the copper concentrate is obtained with yield of 8.3%, copper grade of 25.87% and recovery of 91.37%, the gold content of copper concentrate is 5.9 g/t, and the gold recovery rate is 28.15%. The copper and gold recovery indexes of the copper concentrate are within the prediction range of the process mineralogy. The recommended process is simple and the index is excellent, which provides strong data support for the mine development.
-
Key words:
- copper sulfide /
- secondary sulfide /
- mineral processing test /
- copper-pyrite separation
-
-
表 1 原矿多元素化学分析结果/%
Table 1. Multi-element analysis results of the raw ore
Au* Ag* Cu S Pb Zn As SiO2 Al2O3 2.06 3.46 2.42 18.51 0.017 0.013 0.08 45.8 6.28 Fe Na2O K2O MgO Cr Ba Be MnO Ni 11.63 0.062 1.31 <0.01 <0.01 0.16 <0.01 0.017 <0.01 *单位为g/t。 表 2 铜物相分析结果
Table 2. Analysis results of copper phases
铜物相 原生
硫化铜次生
硫化铜自由
氧化铜结合
氧化铜总铜 含量/% 0.45 1.92 0.07 0.01 2.45 占有率/% 18.37 78.33 2.70 0.60 100.00 表 3 铜硫化物粒度及解离连生关系分析结果
Table 3. Analysis results of relationship between particles and association attachment of copper sulfide
铜硫化物连生
类型(X)产率/% 连生关系/% 铜硫化物粒度分布/% 与Py 与其他 -10 µm -20+10 µm -38+20 µm -74+38 µm -150+74 µm +150 µm X=100% 64.20 / / 0.34 14.25 18.36 16.89 14.36 / X=100%~80% 24.02 19.65 4.37 0.01 0.15 0.50 3.13 10.12 10.11 X=80%~50% 6.29 6.29 / 0.06 0.06 0.50 1.57 4.10 / X<50% 5.49 3.46 2.03 0.59 1.15 2.25 1.50 / / 合计 100.00 29.40 6.40 1.00 15.61 21.61 23.09 28.58 10.11 注:X为目标矿物在连生体中占比,Py为黄铁矿缩写,下同。 表 4 主要矿物中金的分配结果
Table 4. Distribution results of gold in main minerals
矿物名称类别 黄铁矿 铜蓝等
铜硫化物非硫
化物解离金+
连生金合计 矿物含量/% 27.26 3.92 68.82 / 100.00 Au品位/(g/t) 3.48 11.71 0.46 / 2.06 Au分配率/% 46.05 22.28 15.37 16.30 100.00 表 5 闭路实验结果
Table 5. Test results of the closed-circuit test
产品名称 产率/% 品位/% 回收率/% Cu Au* S As Cu Au S As 铜精矿 8.30 25.87 5.90 40.33 0.87 91.37 28.15 18.37 90.41 硫精矿 35.96 0.46 2.85 28.37 0.018 7.05 63.47 60.31 4.90 尾矿 55.74 0.19 0.23 6.31 0.01 1.58 8.38 21.32 4.69 原矿 100.00 2.35 1.61 16.91 0.08 100.00 100.00 100.00 100.00 *单位为g/t。 -
[1] 刘平,赵冬梅,田保红.高性能铜合金及其加工技术[M].北京:冶金工业出版社,2005.LIU P, ZHAO D M,TIAN B H. High performance copper alloy and its processing technology[M]. Beijing: Metallurgical Industry Press, 2005.
LIU P, ZHAO D M,TIAN B H. High performance copper alloy and its processing technology[M]. Beijing: Metallurgical Industry Press, 2005.
[2] 丁良忠,代宗,贺志青. 金川硫化铜镍矿选矿工艺改造实践[J]. 矿产综合利用, 2022(1):168-172.DING L Z, DAI Z, HE Z Q. Technical transformation and productive practice of mineral processing flowsheet about jinchuan copper-nickel sulfide ore[J]. Multipurpose Utilization of Mineral Resources, 2022(1):168-172. doi: 10.3969/j.issn.1000-6532.2022.01.023
DING L Z, DAI Z, HE Z Q. Technical transformation and productive practice of mineral processing flowsheet about jinchuan copper-nickel sulfide ore[J]. Multipurpose Utilization of Mineral Resources, 2022(1):168-172. doi: 10.3969/j.issn.1000-6532.2022.01.023
[3] 周涛,黄国贤,李飞,等. 西藏某细粒嵌布难选硫化铜矿选矿实验研究[J]. 矿产综合利用, 2022(2):45-50.ZHOU T ,HUANG G X,LI F,et al. Experimental research on mineral processing for a refractory fine disseminated copper sulfide ore in Tibet[J]. Multipurpose Utilization of Mineral Resources, 2022(2):45-50. doi: 10.3969/j.issn.1000-6532.2022.02.008
ZHOU T ,HUANG G X,LI F,et al. Experimental research on mineral processing for a refractory fine disseminated copper sulfide ore in Tibet[J]. Multipurpose Utilization of Mineral Resources, 2022(2):45-50. doi: 10.3969/j.issn.1000-6532.2022.02.008
[4] 邱廷省. 高硫含次生矿的硫化铜矿选矿工艺研究[J]. 中国矿山工程, 1999(3):15-17.QIU T S. Study on beneficiation process of copper sulfide ore with high sulfur and secondary ore[J]. China Mine Engineering, 1999(3):15-17.
QIU T S. Study on beneficiation process of copper sulfide ore with high sulfur and secondary ore[J]. China Mine Engineering, 1999(3):15-17.
[5] 赵红波,王军,张雁生,等. 新型捕收剂CSU-21浮选赞比亚谦比希某铜矿试验研究[J]. 矿冶工程, 2014(3):35-37.ZHAO H B,WANG J, ZHANG Y S, et al. Performance of collector CSU-21 in flotation of copper ores from Chambishi of Zambia[J]. Mining and Metallurgy Engineering, 2014(3):35-37. doi: 10.3969/j.issn.0253-6099.2014.02.009
ZHAO H B,WANG J, ZHANG Y S, et al. Performance of collector CSU-21 in flotation of copper ores from Chambishi of Zambia[J]. Mining and Metallurgy Engineering, 2014(3):35-37. doi: 10.3969/j.issn.0253-6099.2014.02.009
[6] 李崇德, 孙传尧. 铜硫浮选分离的研究进展[J]. 国外金属矿选矿, 2000(8):2-7.LI C D, SUN C Y. Research progress of copper-sulfur flotation separation[J]. Foreign Metal Ore Dressing, 2000(8):2-7.
LI C D, SUN C Y. Research progress of copper-sulfur flotation separation[J]. Foreign Metal Ore Dressing, 2000(8):2-7.
[7] 张莉,王海玉. 关于某硫化铜镍矿中矿选别流程的应用探讨[J]. 矿产综合利用, 2022(2):127-130.ZHANG L,WANG H Y. Discussion about the application of separation process in the middling of a copper-nickel sulfide ore[J]. Multipurpose Utilization of Mineral Resources, 2022(2):127-130. doi: 10.3969/j.issn.1000-6532.2022.02.023
ZHANG L,WANG H Y. Discussion about the application of separation process in the middling of a copper-nickel sulfide ore[J]. Multipurpose Utilization of Mineral Resources, 2022(2):127-130. doi: 10.3969/j.issn.1000-6532.2022.02.023
[8] 曹惠昌. 我国铜矿石选矿技术研究新进展[J]. 有色矿冶, 2011, 27(6):26-28.CAO H C. New research advance about beneficiation of copper ore in China[J]. Non-ferrous Mining and Metallurgy, 2011, 27(6):26-28. doi: 10.3969/j.issn.1007-967X.2011.06.009
CAO H C. New research advance about beneficiation of copper ore in China[J]. Non-ferrous Mining and Metallurgy, 2011, 27(6):26-28. doi: 10.3969/j.issn.1007-967X.2011.06.009
[9] 逄军武,张玲,达娃卓玛,等. 某选矿厂处理角岩型铜硫矿选铜浮选实验[J]. 矿产综合利用, 2021(4):139-143.PANG J W,ZHANG L,DAWA Z M,et al. Treatment of breccia in a concentrator copper sulphur ore flotation test of copper separation[J]. Multipurpose Utilization of Mineral Resources, 2021(4):139-143. doi: 10.3969/j.issn.1000-6532.2021.04.021
PANG J W,ZHANG L,DAWA Z M,et al. Treatment of breccia in a concentrator copper sulphur ore flotation test of copper separation[J]. Multipurpose Utilization of Mineral Resources, 2021(4):139-143. doi: 10.3969/j.issn.1000-6532.2021.04.021
[10] 杨远坤. 某低品位铜矿石浮选工艺优化实验研究[J]. 有色金属(选矿部分), 2016(2):14-17.YANG Y K. Study on flotation process optimization of a low-grade copper ore[J]. Nonferrous Metals(Mineral Processing Section), 2016(2):14-17.
YANG Y K. Study on flotation process optimization of a low-grade copper ore[J]. Nonferrous Metals(Mineral Processing Section), 2016(2):14-17.
[11] FUERSTENAU M C, KUHN M C, ELGILLANI D A. The role of dixanthogen in xanthate flotation of pyrite[J]. Transactions of American Institute of Mining, Metallurgical and Petroleum Engineers, 1968, 241:148-156.
[12] 沈继财. 部分快速浮选新工艺在某硫化铜矿中的应用研究[J]. 矿产综合利用, 2019(1):48-50.SHEN J C. Study on new flowsheet of part of the fast flotation for some sulfide copper ore[J]. Multipurpose Utilization of Mineral Resources, 2019(1):48-50. doi: 10.3969/j.issn.1000-6532.2019.01.010
SHEN J C. Study on new flowsheet of part of the fast flotation for some sulfide copper ore[J]. Multipurpose Utilization of Mineral Resources, 2019(1):48-50. doi: 10.3969/j.issn.1000-6532.2019.01.010
-