Preparation of Amino Modified Coal Gangue and its Adsorption of Pb (II)
-
摘要:
煤矸石吸附剂的开发不仅可以对其进行有效利用,还可以降低重金属离子废水的处理成本。以晋能塔山选煤厂煤矸石为原料,通过插层、盐酸预处理以及氨基修饰的方法制备了一系列吸附材料,利用Box-Behnken对实验条件进行优化,考查了其对水中Pb(Ⅱ)的吸附性能,通过XRD、FTIR、BET、Zeta电位等手段对吸附材料的物理化学性质进行分析。结果表明:煤矸石经插层、盐酸预处理和氨基修饰后对Pb(Ⅱ)的吸附容量增大,从原矿的1.89 mg/g提升至23.02 mg/g。煤矸石表面氨基的接枝率是吸附性能的关键;吸附剂对Pb(Ⅱ)的吸附符合准二级动力学模型,等温吸附符合Langmuir 吸附模型。以煤矸石为原料制备的氨基修饰后的煤矸石具有价廉易得、吸附性能好等优点,具有潜在的工业应用价值。
-
关键词:
- 煤矸石 /
- 硅烷偶联剂 /
- 吸附剂 /
- Pb(Ⅱ) /
- Box-Behnken 实验设计
Abstract:The development of coal gangue adsorbent can not only effectively utilize it, but also reduce the treatment cost of heavy metal ion wastewater. A series of adsorbent materials were prepared by intercalation, hydrochloric acid pretreatment and amino modification using coal gangue from JinnengTashan Coal Preparation Plant as raw materials. The experimental conditions were optimized by Box-Behnken experimental design method. The adsorption properties of Pb ( II ) in water were investigated. The physical and chemical properties of the adsorption materials were analyzed by XRD, FTIR, BET and Zeta potential. The results showed that the adsorption capacity of Pb ( II ) by coal gangue after intercalation, hydrochloric acid pretreatment and amino modification was increased from 1.89 mg/g of the raw ore to 23.02 mg/g. The grafting rate of amino groups on the surface of coal gangue is the key to adsorption performance. The adsorption of Pb ( II ) by the adsorbent conforms to the pseudo-second-order kinetic model, and the isothermal adsorption conforms to the Langmuir adsorption model. The amino-modified coal gangue prepared from coal gangue has the advantages of low cost, good adsorption performance, and potential industrial application value.
-
Key words:
- coalgangue /
- silane coupling agent /
- adsorbent /
- Box-Behnken experimental design /
- Pb (II).
-
-
表 1 Box-Behnken实验方案设计及结果
Table 1. Box-Behnken test design and results
序号 Factor 1 Factor 2 Factor 3 反应 X1投用量/g X2温度/℃ X3时间/h 吸附量/(mg/g) 1 1 0 -1 19.276 2 0 0 0 22.926 3 0 1 1 20.920 4 -1 1 0 17.245 5 0 0 0 22.880 6 1 0 1 20.000 7 0 0 0 22.325 8 -1 0 1 18.805 9 0 1 -1 20.397 10 0 -1 1 22.953 11 1 -1 0 19.366 12 0 0 0 23.142 13 -1 -1 0 17.844 14 0 -1 -1 21.730 15 0 0 0 22.932 16 -1 0 -1 18.129 17 1 1 0 18.950 表 2 实验结果方差分析表(ANOVA)
Table 2. Analysis of variance (ANOVA) for the test results
方差来源 平方和 自由度 均方 F值 P值 显著性 Model 65.79 9 7.31 43.46 < 0.000 1 ** X1-添加量 3.87 1 3.88 23.05 0.002 0 * X2-温度 2.39 1 2.39 14.26 0.006 9 * X3-时间 1.23 1 1.24 7.36 0.030 1 * X1X2 0.008 1 0.008 0.05 0.829 9 X1X3 0.000 6 1 0.000 6 0.003 0.952 2 X2X3 0.12 1 0.12 0.73 0.421 2 X1² 50.66 1 50.66 301.2 < 0.000 1 ** X2² 4.39 1 4.39 26.11 0.001 4 * X3² 0.43 1 0.43 2.56 0.153 7 残差 1.18 7 0.17 失拟项 0.8 3 0.27 2.87 0.167 6 不显著 纯误差 0.37 4 0.09 总和 66.98 16 方差 Adjust-R2 = 0.959 8 R2 = 0.982 4 注:*差异显著(P<0.05),**差异极显著(P<0.01)。 表 3 煤矸石和氨基修饰后的煤矸石的孔结构特性
Table 3. Pore structure characteristics of coal gangue and amino modified coal gangue
比表面积/
(m2/g)总孔容积/
(cm3/g)平均孔径/
nm煤矸石 18.970 0.079 16.176 氨基修饰后的煤矸石 16.895 0.089 20.751 表 4 氨基修饰后的煤矸石吸附Pb(Ⅱ)的Langmuir和Freundlich的吸附等温线方程常数
Table 4. Langmuir and Freundlich adsorption isotherm equation constants of Pb ( II ) adsorption on amino- modified coal gangue
Langmuir Freundlich qm/(mg/g) 29. 274 n 4.040 KL/(L/mg) 0.030 KF(mg/g) 6.723 R2 0.999 R2 0.948 表 5 氨基修饰后的煤矸石吸附Pb(Ⅱ)的吸附动力学常数
Table 5. Adsorption kinetic constants of Pb ( II ) on amino-modified coal gangue
准一级 准二级 qe/(mg/g) 7.98 qe/(mg/g) 23.98 K1/(l/mg) 0.020 K2/(g/(mg×min)) 0.005 R2 0.979 R2 0.999 表 6 氨基修饰后的煤矸石吸附Pb(Ⅱ)的热力学参数
Table 6. Thermodynamic parameters of Pb ( II ) adsorption on amino-modified coal gangue
反应温度/K ΔG/(kJ/mol) ΔH/(kJ/mol) ΔS/(J/mol) 298.15 -16.64 308.15 -18.57 40.69 192.31 318.15 -20.49 -
[1] 李建华, 苏小宁. 高质量发展下要素价格扭曲对煤炭资源型城市经济增长的影响研究——基于创新的中介效应分析[J]. 煤炭经济研究, 2021, 41(8):11-17.LI J H, SU X N. The impact of factor price distortion on economic growth in coal resource-based cities under high quality development: an analysis of the mediating effect of innovati[J]. Coal Economy Research, 2021, 41(8):11-17.
LI J H, SU X N. The impact of factor price distortion on economic growth in coal resource-based cities under high quality development: an analysis of the mediating effect of innovati[J]. Coal Economy Research, 2021, 41(8):11-17.
[2] HIROYUKI MATSUURA, XIAO YANG, GUANGQIANG LI, et al. Recycling of ironmaking and steelmaking slags in Japan and China[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(4):739-749. doi: 10.1007/s12613-021-2400-5
[3] XIANGXUE WANG, LONG CHEN, LIN WANG, et al. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides[J]. Science China (Chemistry), 2019, 62(8):933-967. doi: 10.1007/s11426-019-9492-4
[4] AKLIMA NARGIS, AHSAN HABIB, MD NAZRUL ISLAM, et al. Source identification, contamination status and health risk assessment of heavy metals from road dusts in Dhaka, Bangladesh[J]. Journal of Environmental Sciences, 2022, 121(11):159-174.
[5] 陈宇. 膨润土改性材料对重金属离子和有机物的吸附研究[D]. 重庆:西南大学,2018.CHEN Y. Adsorption of heavy metal ions and organic matter by bentonite modified materials [D]. Chongqing: Southwest University, 2018.
CHEN Y. Adsorption of heavy metal ions and organic matter by bentonite modified materials [D]. Chongqing: Southwest University, 2018.
[6] 陈理想. 有机粘土矿物的制备与表征及其对重金属吸附性能的研究[D].广州:华南理工大学,2015.CHEN L X. Preparation and characterization of organic clay minerals and their adsorption properties for heavy metals [D]. Guangzhuo: South China University of Technology, 2015.
CHEN L X. Preparation and characterization of organic clay minerals and their adsorption properties for heavy metals [D]. Guangzhuo: South China University of Technology, 2015.
[7] 梁学峰. 黏土矿物表面修饰及其吸附重金属离子的性能规律研究[D].天津:天津大学,2015.LIANG X F. Study on surface modification of clay minerals and their adsorption properties of heavy metal ions [D]. Tianjin:Tianjin University, 2015.
LIANG X F. Study on surface modification of clay minerals and their adsorption properties of heavy metal ions [D]. Tianjin:Tianjin University, 2015.
[8] CHENG JIANGGUO, ZHANG JIE, XIE FEI, et al. Application and properties of organic emulsion coated phosphogypsum in aluminous rock based mineral polymer composite[J]. Journal of Wuhan University of Technology (Materials Science), 2021, 36(6):830-838. doi: 10.1007/s11595-021-2477-8
[9] 张乾, 张白梅, 张玉德, 等. 机械力化学法制备硅烷接枝高岭石的研究[J]. 硅酸盐通报, 2017, 36(3):942-946.ZHANG Q, ZHANG B M, ZHANG Y D, et al. Preparation of silane grafted kaolinite by mechanochemical method[J]. Silicate Bulletin, 2017, 36(3):942-946.
ZHANG Q, ZHANG B M, ZHANG Y D, et al. Preparation of silane grafted kaolinite by mechanochemical method[J]. Silicate Bulletin, 2017, 36(3):942-946.
[10] PEILIANG CONG, YAQIANCHENG. Advances in geopolymer materials: A comprehensive review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2021, 8(3):283-314. doi: 10.1016/j.jtte.2021.03.004
[11] YONGHAO DI, FANG YUAN, XIAOTIAN NING, et al. Functionalization of diatomite with glycine and amino silane for formaldehyde removal[J]. International Journal of Minerals Metallurgy and Materials, 2022, 29(2):356-367. doi: 10.1007/s12613-020-2245-3
[12] 尚志新. γ-巯丙基三乙氧基硅烷对白炭黑改性机理及工艺优化[D].北京: 中国矿业大学(北京),2020.SHANG Z X. Mechanism and process optimization of silica modification by γ-mercaptopropyl triethoxy silane [D].Beijing: China University of Mining and Technology (Beijing), 2020.
SHANG Z X. Mechanism and process optimization of silica modification by γ-mercaptopropyl triethoxy silane [D].Beijing: China University of Mining and Technology (Beijing), 2020.
[13] 李清江,杨莹,蒋莉,等. 表面改性纳米二氧化硅粒子制备与分散性表征分析[J]. 实验技术与管理, 2019, 36(10):159-162.LI Q J, YANG Y, JIANG L, et al. Preparation and dispersion characterization of surface modified nano-silica particles[J]. Experimental Technology and Management, 2019, 36(10):159-162.
LI Q J, YANG Y, JIANG L, et al. Preparation and dispersion characterization of surface modified nano-silica particles[J]. Experimental Technology and Management, 2019, 36(10):159-162.
[14] 赵雪淞, 史帅, 王冬旭, 等. 甘肃张掖煤系高岭土湿法改性实验研究[J]. 非金属矿, 2020, 43(6):60-63.ZHAO X S, SHI S, WANG D X, et al. Experimental study on wet modification of coal measure kaolin in Zhangye, Gansu[J]. Nonmetallic Ore, 2020, 43(6):60-63.
ZHAO X S, SHI S, WANG D X, et al. Experimental study on wet modification of coal measure kaolin in Zhangye, Gansu[J]. Nonmetallic Ore, 2020, 43(6):60-63.
[15] ZOGO MFEGUE BERENGER, MBEY JEAN AIMÉ, COULIBALYSANDOTINLASSINA, et al. DMSO deintercalation in kaolinite–DMSO intercalate: Influence of solution polarity on removal[J]. Journal of Composites Science, 2021, 5(4):97-97. doi: 10.3390/jcs5040097
[16] 安文峰, 胡应模, 张丹丹, 等. 硅烷偶联剂KH 570对电气石表面改性条件优化与表征[J]. 矿产综合利用, 2021, 227(1):193-198.AN W F, HU Y M, ZHANG D D, et al. Optimization and characterization of surface modification conditions of tourmaline by silane coupling agent KH 570[J]. Multipurpose Utilization of Mineral Resources, 2021, 227(1):193-198.
AN W F, HU Y M, ZHANG D D, et al. Optimization and characterization of surface modification conditions of tourmaline by silane coupling agent KH 570[J]. Multipurpose Utilization of Mineral Resources, 2021, 227(1):193-198.
[17] 许乃岑,沈加林,骆宏玉. X射线衍射和红外光谱法分析高岭石结晶度[J]. 资源调查与环境, 2014, 35(2):152-156.XU N C, SHEN J L, LUO H Y. X-ray diffraction and infrared spectroscopy analysis of kaolinite crystallinity[J]. Resource Investigation and Environment, 2014, 35(2):152-156.
XU N C, SHEN J L, LUO H Y. X-ray diffraction and infrared spectroscopy analysis of kaolinite crystallinity[J]. Resource Investigation and Environment, 2014, 35(2):152-156.
[18] IS FATIMAH. Preparation, characterization and physicochemical study of 3-amino propyl trimethoxy silane-modified kaolinite for Pb (II) adsorption[J]. Journal of King Saud University - Science, 2018, 30(2):250-257. doi: 10.1016/j.jksus.2017.04.006
[19] 陈慧雯. 黏土基复合颜料的制备及稳定性机理研究[D].北京:中国地质大学(北京),2021.CHEN H W. Preparation and stability mechanism of clay-based composite pigments[D]. Beijing:China University of Geosciences (Beijing), 2021.
CHEN H W. Preparation and stability mechanism of clay-based composite pigments[D]. Beijing:China University of Geosciences (Beijing), 2021.
[20] ZHIJIE LIANG, WENXIN SHI, ZHIWEI ZHAO, et al. The retained templates as “helpers” for the spherical meso-silica in adsorption of heavy metals and impacts of solution chemistry[J]. Journal of Colloid and Interface Science, 2017, 496:382-390. doi: 10.1016/j.jcis.2017.02.024
[21] WENXIANG NI, LUYANG YANG, XIAOLIN ZHANG,et al. Effect of sulfate on Cu(Ⅱ) sorption to polymer-supported nano-hydrated ferric oxides: Experimental and modeling studies[J]. Chinese Journal of Chemical Engineering, 2021, 33(5):319-326.
[22] 熊健, 林海宇, 李原杰, 等. 富有机质页岩中不同矿物的解吸规律[J]. 石油学报, 2022, 43(7):989-997.XIONG J, LIN H Y, LI Y J, et al. Desorption law of different minerals in organic-rich shale[J]. Petroleum Journal, 2022, 43(7):989-997.
XIONG J, LIN H Y, LI Y J, et al. Desorption law of different minerals in organic-rich shale[J]. Petroleum Journal, 2022, 43(7):989-997.
[23] XUEFENG LIANG, JUN HAN, YINGMING XU, et al. Sorption of Cd2+ on mercapto and amino functionalized palygorskite[J]. Applied Surface Science, 2014, 322:194-201. doi: 10.1016/j.apsusc.2014.10.092
-