氨基修饰的煤矸石的制备及其对Pb(Ⅱ)的吸附

刘柏君, 姚素玲, 董宪姝, 付元鹏. 氨基修饰的煤矸石的制备及其对Pb(Ⅱ)的吸附[J]. 矿产综合利用, 2025, 46(4): 157-164, 174. doi: 10.12476/kczhly.202302100051
引用本文: 刘柏君, 姚素玲, 董宪姝, 付元鹏. 氨基修饰的煤矸石的制备及其对Pb(Ⅱ)的吸附[J]. 矿产综合利用, 2025, 46(4): 157-164, 174. doi: 10.12476/kczhly.202302100051
LIU Bojun, YAO Suling, DONG Xianshu, FU Yuanpeng. Preparation of Amino Modified Coal Gangue and its Adsorption of Pb (II)[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(4): 157-164, 174. doi: 10.12476/kczhly.202302100051
Citation: LIU Bojun, YAO Suling, DONG Xianshu, FU Yuanpeng. Preparation of Amino Modified Coal Gangue and its Adsorption of Pb (II)[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(4): 157-164, 174. doi: 10.12476/kczhly.202302100051

氨基修饰的煤矸石的制备及其对Pb(Ⅱ)的吸附

  • 基金项目: 山西省重点研发计划(2022049)省市级;国家自然科学基金国际地区合作与交流项目(51820105006)省市级;山西省基础研究计划项目(202103021223045)省市级
详细信息
    作者简介: 刘柏君(1996-),男,硕士研究生,主要从事煤炭固废资源利用研究
  • 中图分类号: TD989

Preparation of Amino Modified Coal Gangue and its Adsorption of Pb (II)

  • 煤矸石吸附剂的开发不仅可以对其进行有效利用,还可以降低重金属离子废水的处理成本。以晋能塔山选煤厂煤矸石为原料,通过插层、盐酸预处理以及氨基修饰的方法制备了一系列吸附材料,利用Box-Behnken对实验条件进行优化,考查了其对水中Pb(Ⅱ)的吸附性能,通过XRD、FTIR、BET、Zeta电位等手段对吸附材料的物理化学性质进行分析。结果表明:煤矸石经插层、盐酸预处理和氨基修饰后对Pb(Ⅱ)的吸附容量增大,从原矿的1.89 mg/g提升至23.02 mg/g。煤矸石表面氨基的接枝率是吸附性能的关键;吸附剂对Pb(Ⅱ)的吸附符合准二级动力学模型,等温吸附符合Langmuir 吸附模型。以煤矸石为原料制备的氨基修饰后的煤矸石具有价廉易得、吸附性能好等优点,具有潜在的工业应用价值。

  • 加载中
  • 图 1  氨基修饰煤矸石制备路线及接枝机理

    Figure 1. 

    图 2  因素间交互作用对铅吸附量的响应曲面

    Figure 2. 

    图 3  各吸附剂对Pb(Ⅱ)的吸附容量

    Figure 3. 

    图 4  煤矸石(a)、插层煤矸石(b)和氨基修饰后的煤矸石(c)的XRD

    Figure 4. 

    图 5  煤矸石(a)和氨基修饰后的煤矸石(b)的FTIR

    Figure 5. 

    图 6  煤矸石(a)和氨基修饰后的煤矸石(b)的N2吸附-脱附等温线及孔径分布

    Figure 6. 

    图 7  氨基修饰后的煤矸石吸附Pb(Ⅱ)的Langmuir和Freundlich的吸附等温曲线

    Figure 7. 

    图 8  氨基修饰后的煤矸石吸附Pb(Ⅱ)的吸附动力学方程曲线

    Figure 8. 

    图 9  氨基修饰后的煤矸石吸附Pb(Ⅱ)的机理

    Figure 9. 

    表 1  Box-Behnken实验方案设计及结果

    Table 1.  Box-Behnken test design and results

    序号Factor 1Factor 2Factor 3反应
    X1投用量/gX2温度/℃X3时间/h吸附量/(mg/g)
    110-119.276
    200022.926
    301120.920
    4-11017.245
    500022.880
    610120.000
    700022.325
    8-10118.805
    901-120.397
    100-1122.953
    111-1019.366
    1200023.142
    13-1-1017.844
    140-1-121.730
    1500022.932
    16-10-118.129
    1711018.950
    下载: 导出CSV

    表 2  实验结果方差分析表(ANOVA)

    Table 2.  Analysis of variance (ANOVA) for the test results

    方差来源 平方和 自由度 均方 F P 显著性
    Model 65.79 9 7.31 43.46 < 0.000 1 **
    X1-添加量 3.87 1 3.88 23.05 0.002 0 *
    X2-温度 2.39 1 2.39 14.26 0.006 9 *
    X3-时间 1.23 1 1.24 7.36 0.030 1 *
    X1X2 0.008 1 0.008 0.05 0.829 9
    X1X3 0.000 6 1 0.000 6 0.003 0.952 2
    X2X3 0.12 1 0.12 0.73 0.421 2
    X1² 50.66 1 50.66 301.2 < 0.000 1 **
    X2² 4.39 1 4.39 26.11 0.001 4 *
    X3² 0.43 1 0.43 2.56 0.153 7
    残差 1.18 7 0.17
    失拟项 0.8 3 0.27 2.87 0.167 6 不显著
    纯误差 0.37 4 0.09
    总和 66.98 16
    方差 Adjust-R2 = 0.959 8 R2 = 0.982 4
    注:*差异显著(P<0.05),**差异极显著(P<0.01)。
    下载: 导出CSV

    表 3  煤矸石和氨基修饰后的煤矸石的孔结构特性

    Table 3.  Pore structure characteristics of coal gangue and amino modified coal gangue

    比表面积/
    (m2/g)
    总孔容积/
    (cm3/g)
    平均孔径/
    nm
    煤矸石 18.970 0.079 16.176
    氨基修饰后的煤矸石 16.895 0.089 20.751
    下载: 导出CSV

    表 4  氨基修饰后的煤矸石吸附Pb(Ⅱ)的Langmuir和Freundlich的吸附等温线方程常数

    Table 4.  Langmuir and Freundlich adsorption isotherm equation constants of Pb ( II ) adsorption on amino- modified coal gangue

    LangmuirFreundlich
    qm/(mg/g)29. 274n4.040
    KL/(L/mg)0.030KF(mg/g)6.723
    R20.999R20.948
    下载: 导出CSV

    表 5  氨基修饰后的煤矸石吸附Pb(Ⅱ)的吸附动力学常数

    Table 5.  Adsorption kinetic constants of Pb ( II ) on amino-modified coal gangue

    准一级准二级
    qe/(mg/g)7.98qe/(mg/g)23.98
    K1/(l/mg)0.020K2/(g/(mg×min))0.005
    R20.979R20.999
    下载: 导出CSV

    表 6  氨基修饰后的煤矸石吸附Pb(Ⅱ)的热力学参数

    Table 6.  Thermodynamic parameters of Pb ( II ) adsorption on amino-modified coal gangue

    反应温度/KΔG/(kJ/mol)ΔH/(kJ/mol)ΔS/(J/mol)
    298.15-16.64
    308.15-18.5740.69192.31
    318.15-20.49
    下载: 导出CSV
  • [1]

    李建华, 苏小宁. 高质量发展下要素价格扭曲对煤炭资源型城市经济增长的影响研究——基于创新的中介效应分析[J]. 煤炭经济研究, 2021, 41(8):11-17.LI J H, SU X N. The impact of factor price distortion on economic growth in coal resource-based cities under high quality development: an analysis of the mediating effect of innovati[J]. Coal Economy Research, 2021, 41(8):11-17.

    LI J H, SU X N. The impact of factor price distortion on economic growth in coal resource-based cities under high quality development: an analysis of the mediating effect of innovati[J]. Coal Economy Research, 2021, 41(8):11-17.

    [2]

    HIROYUKI MATSUURA, XIAO YANG, GUANGQIANG LI, et al. Recycling of ironmaking and steelmaking slags in Japan and China[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(4):739-749. doi: 10.1007/s12613-021-2400-5

    [3]

    XIANGXUE WANG, LONG CHEN, LIN WANG, et al. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides[J]. Science China (Chemistry), 2019, 62(8):933-967. doi: 10.1007/s11426-019-9492-4

    [4]

    AKLIMA NARGIS, AHSAN HABIB, MD NAZRUL ISLAM, et al. Source identification, contamination status and health risk assessment of heavy metals from road dusts in Dhaka, Bangladesh[J]. Journal of Environmental Sciences, 2022, 121(11):159-174.

    [5]

    陈宇. 膨润土改性材料对重金属离子和有机物的吸附研究[D]. 重庆:西南大学,2018.CHEN Y. Adsorption of heavy metal ions and organic matter by bentonite modified materials [D]. Chongqing: Southwest University, 2018.

    CHEN Y. Adsorption of heavy metal ions and organic matter by bentonite modified materials [D]. Chongqing: Southwest University, 2018.

    [6]

    陈理想. 有机粘土矿物的制备与表征及其对重金属吸附性能的研究[D].广州:华南理工大学,2015.CHEN L X. Preparation and characterization of organic clay minerals and their adsorption properties for heavy metals [D]. Guangzhuo: South China University of Technology, 2015.

    CHEN L X. Preparation and characterization of organic clay minerals and their adsorption properties for heavy metals [D]. Guangzhuo: South China University of Technology, 2015.

    [7]

    梁学峰. 黏土矿物表面修饰及其吸附重金属离子的性能规律研究[D].天津:天津大学,2015.LIANG X F. Study on surface modification of clay minerals and their adsorption properties of heavy metal ions [D]. Tianjin:Tianjin University, 2015.

    LIANG X F. Study on surface modification of clay minerals and their adsorption properties of heavy metal ions [D]. Tianjin:Tianjin University, 2015.

    [8]

    CHENG JIANGGUO, ZHANG JIE, XIE FEI, et al. Application and properties of organic emulsion coated phosphogypsum in aluminous rock based mineral polymer composite[J]. Journal of Wuhan University of Technology (Materials Science), 2021, 36(6):830-838. doi: 10.1007/s11595-021-2477-8

    [9]

    张乾, 张白梅, 张玉德, 等. 机械力化学法制备硅烷接枝高岭石的研究[J]. 硅酸盐通报, 2017, 36(3):942-946.ZHANG Q, ZHANG B M, ZHANG Y D, et al. Preparation of silane grafted kaolinite by mechanochemical method[J]. Silicate Bulletin, 2017, 36(3):942-946.

    ZHANG Q, ZHANG B M, ZHANG Y D, et al. Preparation of silane grafted kaolinite by mechanochemical method[J]. Silicate Bulletin, 2017, 36(3):942-946.

    [10]

    PEILIANG CONG, YAQIANCHENG. Advances in geopolymer materials: A comprehensive review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2021, 8(3):283-314. doi: 10.1016/j.jtte.2021.03.004

    [11]

    YONGHAO DI, FANG YUAN, XIAOTIAN NING, et al. Functionalization of diatomite with glycine and amino silane for formaldehyde removal[J]. International Journal of Minerals Metallurgy and Materials, 2022, 29(2):356-367. doi: 10.1007/s12613-020-2245-3

    [12]

    尚志新. γ-巯丙基三乙氧基硅烷对白炭黑改性机理及工艺优化[D].北京: 中国矿业大学(北京),2020.SHANG Z X. Mechanism and process optimization of silica modification by γ-mercaptopropyl triethoxy silane [D].Beijing: China University of Mining and Technology (Beijing), 2020.

    SHANG Z X. Mechanism and process optimization of silica modification by γ-mercaptopropyl triethoxy silane [D].Beijing: China University of Mining and Technology (Beijing), 2020.

    [13]

    李清江,杨莹,蒋莉,等. 表面改性纳米二氧化硅粒子制备与分散性表征分析[J]. 实验技术与管理, 2019, 36(10):159-162.LI Q J, YANG Y, JIANG L, et al. Preparation and dispersion characterization of surface modified nano-silica particles[J]. Experimental Technology and Management, 2019, 36(10):159-162.

    LI Q J, YANG Y, JIANG L, et al. Preparation and dispersion characterization of surface modified nano-silica particles[J]. Experimental Technology and Management, 2019, 36(10):159-162.

    [14]

    赵雪淞, 史帅, 王冬旭, 等. 甘肃张掖煤系高岭土湿法改性实验研究[J]. 非金属矿, 2020, 43(6):60-63.ZHAO X S, SHI S, WANG D X, et al. Experimental study on wet modification of coal measure kaolin in Zhangye, Gansu[J]. Nonmetallic Ore, 2020, 43(6):60-63.

    ZHAO X S, SHI S, WANG D X, et al. Experimental study on wet modification of coal measure kaolin in Zhangye, Gansu[J]. Nonmetallic Ore, 2020, 43(6):60-63.

    [15]

    ZOGO MFEGUE BERENGER, MBEY JEAN AIMÉ, COULIBALYSANDOTINLASSINA, et al. DMSO deintercalation in kaolinite–DMSO intercalate: Influence of solution polarity on removal[J]. Journal of Composites Science, 2021, 5(4):97-97. doi: 10.3390/jcs5040097

    [16]

    安文峰, 胡应模, 张丹丹, 等. 硅烷偶联剂KH 570对电气石表面改性条件优化与表征[J]. 矿产综合利用, 2021, 227(1):193-198.AN W F, HU Y M, ZHANG D D, et al. Optimization and characterization of surface modification conditions of tourmaline by silane coupling agent KH 570[J]. Multipurpose Utilization of Mineral Resources, 2021, 227(1):193-198.

    AN W F, HU Y M, ZHANG D D, et al. Optimization and characterization of surface modification conditions of tourmaline by silane coupling agent KH 570[J]. Multipurpose Utilization of Mineral Resources, 2021, 227(1):193-198.

    [17]

    许乃岑,沈加林,骆宏玉. X射线衍射和红外光谱法分析高岭石结晶度[J]. 资源调查与环境, 2014, 35(2):152-156.XU N C, SHEN J L, LUO H Y. X-ray diffraction and infrared spectroscopy analysis of kaolinite crystallinity[J]. Resource Investigation and Environment, 2014, 35(2):152-156.

    XU N C, SHEN J L, LUO H Y. X-ray diffraction and infrared spectroscopy analysis of kaolinite crystallinity[J]. Resource Investigation and Environment, 2014, 35(2):152-156.

    [18]

    IS FATIMAH. Preparation, characterization and physicochemical study of 3-amino propyl trimethoxy silane-modified kaolinite for Pb (II) adsorption[J]. Journal of King Saud University - Science, 2018, 30(2):250-257. doi: 10.1016/j.jksus.2017.04.006

    [19]

    陈慧雯. 黏土基复合颜料的制备及稳定性机理研究[D].北京:中国地质大学(北京),2021.CHEN H W. Preparation and stability mechanism of clay-based composite pigments[D]. Beijing:China University of Geosciences (Beijing), 2021.

    CHEN H W. Preparation and stability mechanism of clay-based composite pigments[D]. Beijing:China University of Geosciences (Beijing), 2021.

    [20]

    ZHIJIE LIANG, WENXIN SHI, ZHIWEI ZHAO, et al. The retained templates as “helpers” for the spherical meso-silica in adsorption of heavy metals and impacts of solution chemistry[J]. Journal of Colloid and Interface Science, 2017, 496:382-390. doi: 10.1016/j.jcis.2017.02.024

    [21]

    WENXIANG NI, LUYANG YANG, XIAOLIN ZHANG,et al. Effect of sulfate on Cu(Ⅱ) sorption to polymer-supported nano-hydrated ferric oxides: Experimental and modeling studies[J]. Chinese Journal of Chemical Engineering, 2021, 33(5):319-326.

    [22]

    熊健, 林海宇, 李原杰, 等. 富有机质页岩中不同矿物的解吸规律[J]. 石油学报, 2022, 43(7):989-997.XIONG J, LIN H Y, LI Y J, et al. Desorption law of different minerals in organic-rich shale[J]. Petroleum Journal, 2022, 43(7):989-997.

    XIONG J, LIN H Y, LI Y J, et al. Desorption law of different minerals in organic-rich shale[J]. Petroleum Journal, 2022, 43(7):989-997.

    [23]

    XUEFENG LIANG, JUN HAN, YINGMING XU, et al. Sorption of Cd2+ on mercapto and amino functionalized palygorskite[J]. Applied Surface Science, 2014, 322:194-201. doi: 10.1016/j.apsusc.2014.10.092

  • 加载中

(9)

(6)

计量
  • 文章访问数:  25
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2023-02-10
刊出日期:  2025-08-25

目录