Preparation of Potassium-iron Co-activated Coal-based Porous Carbon and its Electrochemical Performance
-
摘要:
以晋城无烟煤为研究对象,并以绿色无污染的高铁酸钾(K2FeO4)作为活化剂,其中钾基物质作为活化造孔剂,铁基物质催化石墨化,通过一次活化获得了孔隙丰富且具有一定的石墨微晶结构的电容器用煤基多孔炭。研究了较佳的活化温度与药剂用量,并通过扫描电镜、氮吸附测试、Raman 光谱、XRD 等手段对典型样品的理化结构进行了分析,评价了其电化学储能特性。在此基础上,尝试探究N、P元素掺杂对多孔炭的结构及电化学性能的影响。结果表明,在K2FeO4一步化学活化过程中,多孔炭孔隙结构由极微孔向微孔和分级孔演变,炭微晶由无定形向石墨化结构演变;当煤与K2FeO4按质量1∶1,活化温度为900 ℃时,多孔炭的比表面积达到1 220.82 m2/g;在0.5 A/g 电流密度时,其电容值为149.47 F/g ,即使在10 A/g高电流密度时,仍有77.39%的比电容保持率;掺杂N、P元素后的多孔炭电化学性能也得到一定提升,比电容可达167.45 F/g,比电容保持率提升至87.98%。该多孔炭具有价格低廉、易获取、绿色环保等优势,具备潜在的工业应用价值。
Abstract:A coal-based porous carbon was prepared through a single activation process. Jincheng smokeless coal was taken as the research object and ferrate (K2FeO4) as the activator. Meanwhile, potassium-based substances were served as pore-forming agents and iron-based substances contributed to the catalyzing graphitization. The optimal activation temperature and activator dosage were investigated, and the physicochemical structure of representative samples was analyzed using techniques including Scanning Electron Microscopy(SEM), nitrogen adsorption testing, Raman spectroscopy and X-ray diffraction(XRD). The electrochemical energy storage characteristics were evaluated. On this basis, the effect of N and P element doping on the structure and electrochemical performance of the porous carbon was investigated. The results indicate that, the pore structure of the porous carbon evolves from ultra-micropores to micropores and hierarchical pores, while the carbon microcrystals transition from amorphous to graphitic structures during the one-step chemical activation process with K2FeO4. Specifically, with a coal-to-K2FeO4 mass ratio of 1:1 and an activation temperature of 900 ℃, the porous carbon attains a specific surface area of 1 220.82 m2/g. At a current density of 0.5 A/g, its capacitance reaches 149.47 F/g, and even at a high current density of 10 A/g, a capacitance retention rate of 77.39% is maintained. The electrochemical performance of the porous carbon is also enhanced to a certain extent after N and P element doping, with a specific capacitance reaching 167.45 F/g, and the capacitance retention rate increased to 87.98%. This porous carbon material, which is characterized by its cost-effectiveness, accessibility, and environmental friendliness, has great potential for industrial applications.
-
-
表 1 晋城无烟煤工业分析与元素分析
Table 1. Proximate and elemental analysis of Jincheng smokeless coal
工业分析/(%,ad) 元素分析/(%,daf) M A V FC C H N St O 0.69 5.91 8.81 84.59 92.07 3.79 1.27 0.31 2.56 表 2 不同活化温度样品的Raman参数及产率
Table 2. Raman parameters and yields of samples at different activation temperature
活化温度/℃ 700 800 900 1 000 ID/IG 0.999 7 0.993 4 0.985 8 0.977 1 产率/% 28.70 22.26 21.17 18.46 表 3 活化温度对多孔炭孔结构参数的影响
Table 3. Effect of activation temperature on pore structure parameters of porous carbon
样品 SBET/(m2/g) Vtotal/(cm3/g) Dave/nm <2 nm 2~50 nm >50 nm Vmic/(cm3/g) 占比/% Vmec/(cm3/g) 占比/% Vmac/(cm3/g) 占比/% 原煤 7.03 0.012 6.66 0.000 4 3.42 0.01 77.04 0.002 19.54 C-700 865.92 0.42 1.73 0.34 81.25 0.08 18.29 0.002 0.47 C-800 1 221.13 0.62 1.80 0.47 76.17 0.14 23.09 0.005 0.74 C-900 1 220.83 0.63 1.80 0.49 77.24 0.13 21.27 0.009 1.49 C-1000 1 169.80 0.67 1.92 0.47 69.88 0.197 29.45 0.005 0.67 表 4 不同K2FeO4用量样品的Raman参数、产率及Fe元素含量
Table 4. Raman parameters, yields and Fe content of samples with different K2FeO4 dosages
M煤: ${{\rm{M}}_{{{\rm{K}}_{\rm{2}}}{\rm{Fe}}{{\rm{O}}_{\rm{4}}}}} $ 2∶1 2∶2 2∶3 2∶4 ID/IG 0.995 6 0.985 8 1.002 2 0.999 1 产率/% 46.10 21.17 14.58 11.30 Fe元素含量/% 0.55 0.35 1.60 2.06 表 5 K2FeO4用量对多孔炭孔结构参数的影响
Table 5. Effect of K2FeO4 dosage on pore structure parameters of porous carbon
样品 SBET Vtotal Dave <2 nm 2~50 nm >50 nm /(m2/g) /(cm3/g) /nm Vmic/(cm3/g) 占比/% Vmec/(cm3/g) 占比/% Vmac/(cm3/g) 占比/% KFe-1 656.85 0.30 1.73 0.25 83.02 0.05 16.05 0.003 0.93 KFe-2 1 220.83 0.63 1.81 0.49 77.24 0.13 21.27 0.009 1.49 KFe-3 1 411.78 0.97 2.80 0.18 18.36 0.78 79.85 0.018 1.80 KFe-4 1 494.24 0.88 2.34 0.29 33.39 0.58 65.67 0.008 0.94 表 6 掺杂元素前后多孔炭的O、N、P含量对比/%
Table 6. Comparison of O, N and P content of porous carbon before and after element doping
样品 O N P C-900 5.81 0.76 0.01 NP-900 7.19 1.60 1.66 -
[1] LI H, HE X, WU T, et al. Synthesis, modification strategies and applications of coal-based carbon materials[J]. Fuel Processing Technology, 2022, 230:107203. doi: 10.1016/j.fuproc.2022.107203
[2] 石文明, 刘意华, 吕湘连, 等. 超级电容器材料及应用研究进展[J]. 微纳电子技术, 2022, 59(11):1105-1118.SHI W M, LIU Y H, LYU X L, et al. Research progress of supercapacitor materials and applications[J]. Micronanoelectronic Technology, 2022, 59(11):1105-1118
SHI W M, LIU Y H, LYU X L, et al. Research progress of supercapacitor materials and applications[J]. Micronanoelectronic Technology, 2022, 59(11):1105-1118
[3] GAO W, WAN Y, DOU Y, et al. Synthesis of partially graphitic ordered mesoporous carbons with high surface areas[J]. Advanced Energy Materials, 2011, 1(1):115-123. doi: 10.1002/aenm.201000009
[4] 杨桂芬, 黄德权, 卢文斌, 等. 过渡金属催化石墨化碳包覆LiFePO4正极材料[J]. 电源技术, 2023, 47(12):1538-1542.YANG G F, HUANG D Q, LU W B, et al. Transition metal catalyzed graphitized carbon coated LiFePO4 cathode materials[J]. Chinese Journal of Power Sources, 2023, 47(12):1538-1542.
YANG G F, HUANG D Q, LU W B, et al. Transition metal catalyzed graphitized carbon coated LiFePO4 cathode materials[J]. Chinese Journal of Power Sources, 2023, 47(12):1538-1542.
[5] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3):5-10.WANG J Y, ZHOU H. Microwave synthesis of carbon nanomaterials: mechanisms and recent progress[J]. Materials Reports, 2024, 38(3):5-10.
WANG J Y, ZHOU H. Microwave synthesis of carbon nanomaterials: mechanisms and recent progress[J]. Materials Reports, 2024, 38(3):5-10.
[6] 张博, 李想, 刘伟, 等. 氮磷掺杂生物质介孔炭的合成及其电化学性能[J]. 林产化学与工业, 2023, 43(2):56-62.ZHANG B, LI X, LIU W, et al. Synthesis and electrochemical properties of biomass mesoporous carbon doped with nitrogen and phosphorus[J]. Chemistry and Industry of Forest Products, 2023, 43(2):56-62.
ZHANG B, LI X, LIU W, et al. Synthesis and electrochemical properties of biomass mesoporous carbon doped with nitrogen and phosphorus[J]. Chemistry and Industry of Forest Products, 2023, 43(2):56-62.
[7] 杨旋, 于学文, 许圣豪, 等. 氮磷硫共掺杂生物质基多孔炭的制备及其电化学性能[J]. 农业工程学报, 2023, 39(24):224-234.YANG X, YU X W, XU S H, et al. Preparation of N, P, S co-doped biomass porous carbon and its electrochemical properties[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(24):224-234.
YANG X, YU X W, XU S H, et al. Preparation of N, P, S co-doped biomass porous carbon and its electrochemical properties[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(24):224-234.
[8] 杨可, 李海红, 薛慧, 等. 不同活化制度对活性炭制备工艺的影响[J]. 炭素技术, 2019, 38(2):46-51+64.YANG K, LI H H, XUE H, et al. Influence of different activation systems on the preparation of activated carbon[J]. Carbon Techniques, 2019, 38(2):46-51+64.
YANG K, LI H H, XUE H, et al. Influence of different activation systems on the preparation of activated carbon[J]. Carbon Techniques, 2019, 38(2):46-51+64.
[9] XU L, LIU H, JIN Y, et al. Structural order and dielectric properties of coal chars[J]. Fuel, 2014, 137:164-171. doi: 10.1016/j.fuel.2014.08.002
[10] ZHANG L, ZHU Y, ZHAO G, et al. N, O and P co-doped honeycomb-like hierarchical porous carbon derived from Sophora japonica for high performance supercapacitors[J]. Rsc Advances, 2019, 9(64):37171-37178. doi: 10.1039/C9RA06934H
[11] JIANG Y, WANG Y, CUI J, et al. One-step template carbonization-activation synthesis of nitrogen-doped hierarchical porous carbon for supercapacitors[J]. Journal of Solid State Electrochemistry, 2019, 23(8):2355-2366. doi: 10.1007/s10008-019-04327-0
[12] 吴小燕, 秦志宏, 杨小芹, 等. 超级电容器用煤基多孔碳改性研究进展[J]. 洁净煤技术, 2022, 28(1):94-102.WU X Y, QIN Z H,YANG X Q, et al. Advances in the modification of coal-based porous carbon for supercapacitors[J]. Clean Coal Technology, 2022, 28(1):94-102.
WU X Y, QIN Z H,YANG X Q, et al. Advances in the modification of coal-based porous carbon for supercapacitors[J]. Clean Coal Technology, 2022, 28(1):94-102.
[13] 马兰, 王慧梅, 刘忠, 等. 氧化铁负载多孔炭材料的制备及其电化学性能 [J]. 天津: 天津科技大学学报, 2021.MA L, WANG H M, LIU Z, et al. Preparation and electrochemical properties of lron oxide supported porous carbon materials [J]. Journal of Tianjin University of Science & Technology, 2021.
MA L, WANG H M, LIU Z, et al. Preparation and electrochemical properties of lron oxide supported porous carbon materials [J]. Journal of Tianjin University of Science & Technology, 2021.
[14] WANG J, XU Y, YAN M, et al. Preparation and application of biomass-based porous carbon with S, N, Zn, and Fe heteroatoms loading for use in supercapacitors[J]. Biomass and Bioenergy, 2022, 156:106301. doi: 10.1016/j.biombioe.2021.106301
[15] PANG X, ZHOU T, JIANG Q, et al. Porous graphitic carbon fibers for fast-charging supercapacitor applications[J]. Energy Technology, 2020, 8(5):2000050. doi: 10.1002/ente.202000050
[16] 郑淑娟, 李嘉欣, 钟雯诗, 等. 壳聚糖基多孔碳材料的制备及其超级电容性能[J]. 无机化学学报, 2023, 39(3):492-500.ZHENG S J, Ll J X, ZHONG W S, et al. Preparation and electrochemical per-formance for supercapacitors[J]. Chinese Jour-nal of Inorganic Chemistry, 2023, 39(3):492-500.
ZHENG S J, Ll J X, ZHONG W S, et al. Preparation and electrochemical per-formance for supercapacitors[J]. Chinese Jour-nal of Inorganic Chemistry, 2023, 39(3):492-500.
[17] 李娇阳, 李凯琦. 煤表面润湿性的影响因素[J]. 煤炭学报, 2016, 41(S2):448-453.Ll J Y, Ll K Q. lnfluence factors of coal surface wettability[J]. Journal of China Coal Society, 2016, 41(S2):448-453.
Ll J Y, Ll K Q. lnfluence factors of coal surface wettability[J]. Journal of China Coal Society, 2016, 41(S2):448-453.
[18] 邢宝林, 谌伦建, 张传祥, 等. KOH活化法制备褐煤基活性炭的活化机理研究[J]. 中国矿业大学学报, 2014, 43(6):1038-45.XING B L, CHEN L J, ZHANG C X, et al. Activation mechanism oflignite-based activated carbon prepared by KOH activation[J]. Journal of China University of Mining & Technology, 2014, 43(6):1038-45.
XING B L, CHEN L J, ZHANG C X, et al. Activation mechanism oflignite-based activated carbon prepared by KOH activation[J]. Journal of China University of Mining & Technology, 2014, 43(6):1038-45.
[19] TIAN Y, YANG R, LIN R, et al. Influencing factors and catalytic mechanism of catalytic effect in catalytic graphitization[J]. Material Sciences, 2020, 10(1):40-46. doi: 10.12677/MS.2020.101006
[20] 李宇明, 刘梓烨, 张启扬, 等. 氮掺杂碳材料的制备及其在催化领域中的应用[J]. 化工学报, 2021, 72(8):3919-3932.Ll Y M, LIU Z Y, ZHANG Q Y, et al. Preparation of nitrogen-doped carbon materials and their applications in catalysis.[J]. CIESC Journal, 2021, 72(8):3919-3932.
Ll Y M, LIU Z Y, ZHANG Q Y, et al. Preparation of nitrogen-doped carbon materials and their applications in catalysis.[J]. CIESC Journal, 2021, 72(8):3919-3932.
[21] 南东宏, 李凯, 谢金恒, 等. 生物质基掺氮多孔炭材料研究进展[J]. 新能源进展, 2022, 10(2):103-110.NAN D H, Ll K, XIE J H, et al. Progress in biomass-based nitrogen doped porous carbon materials[J]. Advances in New and Renewable Energy, 2022, 10(2):103-110.
NAN D H, Ll K, XIE J H, et al. Progress in biomass-based nitrogen doped porous carbon materials[J]. Advances in New and Renewable Energy, 2022, 10(2):103-110.
[22] 周丹, 刘博, 陈思远, 等. 磷掺杂碳材料的制备、表征及应用进展[J]. 工业催化, 2020, 28(6):7-17.ZHOU D, LIU B, CHEN S Y, et al. Progress in preparation,characterization and application of phosphorus-doped carbon materials[J]. Industrial Catalysis, 2020, 28(6):7-17.
ZHOU D, LIU B, CHEN S Y, et al. Progress in preparation,characterization and application of phosphorus-doped carbon materials[J]. Industrial Catalysis, 2020, 28(6):7-17.
-