磺化偶联改性赤泥对垃圾渗滤液中COD和氨氮的吸附特性

黄明琴, 蔡深文, 程俊伟, 曾伯平. 磺化偶联改性赤泥对垃圾渗滤液中COD和氨氮的吸附特性[J]. 矿产综合利用, 2025, 46(4): 175-183. doi: 10.12476/kczhly.202307020358
引用本文: 黄明琴, 蔡深文, 程俊伟, 曾伯平. 磺化偶联改性赤泥对垃圾渗滤液中COD和氨氮的吸附特性[J]. 矿产综合利用, 2025, 46(4): 175-183. doi: 10.12476/kczhly.202307020358
HUANG Mingqin, CAI Shenwen, CHENG Junwei, ZENG Boping. Adsorption of COD and Ammonia Nitrogen in Landfill Leachate on Red Mud Modified by Sulfonation Coupling[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(4): 175-183. doi: 10.12476/kczhly.202307020358
Citation: HUANG Mingqin, CAI Shenwen, CHENG Junwei, ZENG Boping. Adsorption of COD and Ammonia Nitrogen in Landfill Leachate on Red Mud Modified by Sulfonation Coupling[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(4): 175-183. doi: 10.12476/kczhly.202307020358

磺化偶联改性赤泥对垃圾渗滤液中COD和氨氮的吸附特性

  • 基金项目: 遵义市科技计划项目(遵市科合HZ字[2022]140);贵州省教育厅青年科技人才成长项目(黔教合KY字[2020]104);赤水河流域环境保护与山地农业发展人才基地
详细信息
    作者简介: 黄明琴(1987-),女,硕士,讲师,研究方向为固废资源化与环境监测
    通讯作者: 蔡深文(1984-),男,博士,教授,主要从事环境污染物的生态效应及机制研究
  • 中图分类号: TD989

Adsorption of COD and Ammonia Nitrogen in Landfill Leachate on Red Mud Modified by Sulfonation Coupling

More Information
  • 以对氨基苯磺酸钠和硅烷偶联剂(KH560)为改性剂,对铝业赤泥进行了磺化偶联改性,并用于垃圾渗滤液的吸附处理,研究了溶液pH值、吸附剂投加量、吸附时间、反应温度等对COD和氨氮的吸附影响,采用红外光谱和扫描电镜对改性赤泥进行表征,并就吸附等温线、动力学和热力学特征进行了探讨。结果表明:磺化偶联改性赤泥(SCRM)对渗滤液中COD和氨氮的吸附效果显著提高,在溶液pH值为8,投加量60 g /L,吸附时间90 min,反应温度20 ℃条件下,对COD和氨氮的平衡吸附量可达81.51 mg /g 和19.24 mg /g,去除率分别达87.57%和72.05%。改性后赤泥颗粒孔道结构由浅隙孔转变为贯穿孔,并出现明显的磺化特征基团。SCRM对COD和氨氮的吸附分别属于单层吸附和多层吸附,吸附动力学更符合拟二级动力学模型,且均为吸热、熵增的自发反应过程。

  • 加载中
  • 图 1  RM和SCRM的FTIR

    Figure 1. 

    图 2  改性反应机理

    Figure 2. 

    图 3  RM和SCRM的SEM

    Figure 3. 

    图 4  吸附剂用量对COD和氨氮的吸附影响

    Figure 4. 

    图 5  渗滤液初始pH值对COD和氨氮的吸附影响

    Figure 5. 

    图 6  反应时间对COD和氨氮的吸附影响

    Figure 6. 

    图 7  COD和氨氮的吸附拟一级、拟二级动力学模型拟合曲线

    Figure 7. 

    图 8  COD和氨氮的吸附等温模型拟合曲线

    Figure 8. 

    表 1  原料赤泥的成分 单位:%

    Table 1.  Composition content of the raw red mud

    Na2OSiO2Al2O3Fe2O3CaOTiO2MgOP2O5K2OSO3其他
    9.6219.3925.6626.919.823.821.220.151.351.670.39
    下载: 导出CSV

    表 2  RM和SCRM的比表面积及孔径分布

    Table 2.  BET and pore size distribution of RM and SCRM

    样品比表面积SBET
    /(m2/g)
    单位孔体积V
    /(cm3/g)
    孔径R
    /nm
    RM11.830.113 422.79
    SCRM146.210.465 28.96
    下载: 导出CSV

    表 3  吸附动力学模型拟合结果

    Table 3.  Fitting results of adsorption kinetics model

    吸附质动力学模型qe/(mg/g)K/(min-1或g/(mg·min))R2
    COD拟一级265.190.064 800.831 7
    拟二级93.980.000 460.990 7
    氨氮拟一级15.770.046 400.656 1
    拟二级21.750.002 390.991 4
    下载: 导出CSV

    表 4  Langmuir和Freundlich模型等温拟合参数

    Table 4.  Isothermal fitting parameters of Langmuir and Freundlich models

    吸附
    指标
    温度/℃Langmuir 模型Freundlich 模型
    qm /(mg/g)klR2kfnR2
    COD10156.016.13x10-40.976 52.214 21.941 20.964 3
    20169.7811.27x10-40.989 32.226 52.183 50.962 0
    30211.426.36x10-40.971 35.489 32.546 70.919 3
    氨氮1016.785.8x10-40.976 61.93x10-40.492 00.995 8
    2040.317.2x10-40.971 71.43x10-30.640 10.987 8
    3064.354.7x10-40.983 43.99x10-30.727 80.991 5
    下载: 导出CSV

    表 5  SCRM吸附COD和氨氮的热力学参数

    Table 5.  Thermodynamic parameters of adsorption of COD and ammonia nitrogen by SCRM

    吸附
    指标
    吸附
    温度/℃
    Kc ΔG/
    (KJ/mol)
    ΔH/
    (KJ/mol)
    ΔS/
    (J/(mol·K))
    COD 10 2.39 -2.05 36.16 136.14
    20 5.93 -4.34
    30 6.65 -4.77
    氨氮 10 1.12 -0.27 26.59 96.33
    20 2.71 -2.43
    30 2.39 -2.20
    下载: 导出CSV

    表 6  同类型改性颗粒对渗滤液指标COD和氨氮的吸附效率对比

    Table 6.  Comparison of adsorption efficiency of COD and ammonia nitrogen by similar modified particle

    粒料类型改性方法渗滤液指标脱除效率/%
    COD氨氮
    赤泥破碎粒化23.8127.35
    活性炭强酸酸化86.79-
    矿化垃圾焙烧58.3879.77
    赤泥*磺化偶联87.5772.05
    注:*代表本研究所用方法及吸附效率。
    下载: 导出CSV
  • [1]

    詹静芳, 王珊珊. 中国生活垃圾填埋场甲烷源碳排放量预测评估[J]. 环境科学与技术, 2022, 45(11):147-155.ZHAN J F, WANG S S. Assessment of methane generation and relevant carbon emission from MSW landfills in China[J]. Environmental Science & Technology, 2022, 45(11):147-155.

    ZHAN J F, WANG S S. Assessment of methane generation and relevant carbon emission from MSW landfills in China[J]. Environmental Science & Technology, 2022, 45(11):147-155.

    [2]

    尹文俊, 周伟伟, 王凯, 等. 垃圾渗滤液物化与生化处理工艺技术现状[J]. 环境工程, 2018, 36(2):83-87.YIN W J, ZHOU W W, WANG K, et al. Analysis of physical-chemistry and biochemical treatmenttechnologies on landfill leachate[J]. Environmental Engineering, 2018, 36(2):83-87.

    YIN W J, ZHOU W W, WANG K, et al. Analysis of physical-chemistry and biochemical treatmenttechnologies on landfill leachate[J]. Environmental Engineering, 2018, 36(2):83-87.

    [3]

    张璇, 袁林江, 马保卫, 等. 西安某垃圾填埋场渗滤液生物净化性能改善研究[J]. 水处理技术, 2012, 38(11):69-72.ZHANG X, YUAN L J, MA B W, et al. Study on biological degradation of leachate from a landfill in xi'an[J]. Technology of Water Treatment, 2012, 38(11):69-72. doi: 10.3969/j.issn.1000-3770.2012.11.015

    ZHANG X, YUAN L J, MA B W, et al. Study on biological degradation of leachate from a landfill in xi'an[J]. Technology of Water Treatment, 2012, 38(11):69-72. doi: 10.3969/j.issn.1000-3770.2012.11.015

    [4]

    何耀. 拜尔法赤泥利用现状及高效资源化利用新技术[J]. 矿产综合利用, 2022(4):106-110.HE Y. New technology for efficient resource utilization of red mud from Bayer process[J]. Multipurpose Utilization of Mineral Resources, 2022(4):106-110. doi: 10.3969/j.issn.1000-6532.2022.04.019

    HE Y. New technology for efficient resource utilization of red mud from Bayer process[J]. Multipurpose Utilization of Mineral Resources, 2022(4):106-110. doi: 10.3969/j.issn.1000-6532.2022.04.019

    [5]

    CARLO E D, BOULLEMANT A, COURTNEY R. A field assessment of bauxite residue rehabilitation strategies[J]. Science of the Total Environment, 2019, 663:915-926. doi: 10.1016/j.scitotenv.2019.01.376

    [6]

    冉浩学,谢名淇,朱燕,等. 赤泥在水、土、气环境治理中的应用研究进展[J]. 矿产综合利用, 2022(2):167-176.RAN H X, XIE M Q, ZHU Y, et al. Research progress in the application of red mud in water, soil and air environmental treatment[J]. Multipurpose Utilization of Mineral Resources, 2022(2):167-176. doi: 10.3969/j.issn.1000-6532.2022.02.030

    RAN H X, XIE M Q, ZHU Y, et al. Research progress in the application of red mud in water, soil and air environmental treatment[J]. Multipurpose Utilization of Mineral Resources, 2022(2):167-176. doi: 10.3969/j.issn.1000-6532.2022.02.030

    [7]

    DU X L, CUI S S, FANG X, et al. Adsorption of Cd(II), Cu(II), and Zn(II) by granules prepared using sludge from a drinking water purification plant[J]. Journal of Environmental Chemical Engineering, 2020, 8(6):104530. doi: 10.1016/j.jece.2020.104530

    [8]

    杨世诚, 孙琦, 谌伦建, 等. 赤泥改性及其对丁苯橡胶复合材料微观结构和力学性能的影响[J]. 化工进展, 2019, 38(7):3297-3303.YANG S C, SUN Q, CHEN L J, et al. Effect of modified red mud on microstructure and mechanical properties of butadiene-styrene rubber composites[J]. Chemical Industry and Engineering Progress, 2019, 38(7):3297-3303.

    YANG S C, SUN Q, CHEN L J, et al. Effect of modified red mud on microstructure and mechanical properties of butadiene-styrene rubber composites[J]. Chemical Industry and Engineering Progress, 2019, 38(7):3297-3303.

    [9]

    孙发孟, 白蕊, 张发爱. PolyHIPEs块体的磺化改性及其吸附研究[J]. 化学研究与应用, 2014, 26(8):1266-1271.SUN F M, BAI R, ZHANG F A. Sulfonation and adsorption of PolyHIPEs[J]. Chemical Research and Application, 2014, 26(8):1266-1271. doi: 10.3969/j.issn.1004-1656.2014.08.017

    SUN F M, BAI R, ZHANG F A. Sulfonation and adsorption of PolyHIPEs[J]. Chemical Research and Application, 2014, 26(8):1266-1271. doi: 10.3969/j.issn.1004-1656.2014.08.017

    [10]

    李宸, 鲁镜镜, 蒙梅, 等. 醇胺钛酸酯改性磁化赤泥对Pb(II)的吸附性能研究[J]. 硅酸盐通报, 2022, 41(2):625-633.LI C, LU J J, MENG M, et al. Adsorption property of Pb(II) to magnetic red mud modified by alcohol-amine titanate[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2):625-633. doi: 10.3969/j.issn.1001-1625.2022.2.gsytb202202030

    LI C, LU J J, MENG M, et al. Adsorption property of Pb(II) to magnetic red mud modified by alcohol-amine titanate[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2):625-633. doi: 10.3969/j.issn.1001-1625.2022.2.gsytb202202030

    [11]

    张勃宇, 卢定泽. 改性矿渣处理活性艳蓝KN-R染料废水的能力[J]. 矿产综合利用, 2022, 43(3):42-46,94.ZHANG B Y, LU D Z. Ability of modified slag to treat reactive brilliant blue KN-R dye wastewater[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3):42-46,94. doi: 10.3969/j.issn.1000-6532.2022.03.008

    ZHANG B Y, LU D Z. Ability of modified slag to treat reactive brilliant blue KN-R dye wastewater[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3):42-46,94. doi: 10.3969/j.issn.1000-6532.2022.03.008

    [12]

    段金明, 林锦美, 方宏达, 等. 改性钢渣吸附氨氮和磷的特性研究[J]. 环境工程学报, 2012, 6(1):201-205. DUAN J M, LIN J M, FANG H D, et al. Adsorption characteristic of modified steel-making slag for simultaneous removal of phosphorus and ammonium nitrogen from aqueous solution[J]. Chinese Journal of Environmental Engineering, 2012, 6(1):201-205.

    DUAN J M, LIN J M, FANG H D, et al. Adsorption characteristic of modified steel-making slag for simultaneous removal of phosphorus and ammonium nitrogen from aqueous solution[J]. Chinese Journal of Environmental Engineering, 2012, 6(1):201-205.

    [13]

    刘海伟, 刘云, 王海云, 等. 爬山虎茎粉对水体中氨氮的吸附特性[J]. 中国环境科学, 2010, 30(5):683-688LIU H W, LIU Y, WANG H Y, et al. Adsorption of ammonia nitrogen from aqueous solution by Boston ivy stem powder[J]. China Environmental Science, 2010, 30(5):683-688.

    LIU H W, LIU Y, WANG H Y, et al. Adsorption of ammonia nitrogen from aqueous solution by Boston ivy stem powder[J]. China Environmental Science, 2010, 30(5):683-688.

    [14]

    高雯雯, 苏婷, 弓莹, 等. 载铜活性炭对焦化废水的吸附性能研究[J]. 非金属矿, 2016, 39(1):40-43.GAO W W, SU T, GONG Y, et al. Study of adsorption property of coking wastewater on activated carbon loaded copper[J]. Non-Metallic Mines, 2016, 39(1):40-43. doi: 10.3969/j.issn.1000-8098.2016.01.013

    GAO W W, SU T, GONG Y, et al. Study of adsorption property of coking wastewater on activated carbon loaded copper[J]. Non-Metallic Mines, 2016, 39(1):40-43. doi: 10.3969/j.issn.1000-8098.2016.01.013

    [15]

    骆欣,刘瑞森,徐东耀,等. 热改性粉煤灰对水中铜的动态吸附研究[J]. 矿产综合利用, 2022(3):137-142.LUO X, LIU R S, XU D Y, et al. Study on dynamic adsorption of copper in water by thermally modified fly ash[J]. Multipurpose Utilization of Mineral Resources, 2022(3):137-142. doi: 10.3969/j.issn.1000-6532.2022.03.024

    LUO X, LIU R S, XU D Y, et al. Study on dynamic adsorption of copper in water by thermally modified fly ash[J]. Multipurpose Utilization of Mineral Resources, 2022(3):137-142. doi: 10.3969/j.issn.1000-6532.2022.03.024

    [16]

    XU H, HU X J, CHEN Y H, et al. Cd (II) and Pb (II) absorbed on humic acid-iron-pillared bentonite: kinetics, thermodynamics and mechanism of adsorption[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612:126005. doi: 10.1016/j.colsurfa.2020.126005

    [17]

    姜浩, 廖立兵, 郑红, 等. 赤泥吸附垃圾渗滤液中COD和氨氮的实验研究[J]. 安全与环境工程, 2007, 14(3):69-73.JIANG H, LIAO L B, ZHENG H, et al. Adsorption of COD and ammonia-nitrogen from landfill leachate by red mud[J]. Safety and Environmental Engineering, 2007, 14(3):69-73. doi: 10.3969/j.issn.1671-1556.2007.03.019

    JIANG H, LIAO L B, ZHENG H, et al. Adsorption of COD and ammonia-nitrogen from landfill leachate by red mud[J]. Safety and Environmental Engineering, 2007, 14(3):69-73. doi: 10.3969/j.issn.1671-1556.2007.03.019

    [18]

    蒋绪, 兰新哲, 宋永辉, 等. 酸改性兰炭基活性炭吸附焦化废水中COD研究[J]. 非金属矿, 2019, 42(3):96-99.JIANG X, LAN X Z, SONG Y H, et al. Adsorption of COD in coking wastewater on acid modified blue coke-based activated carbon[J]. Non-Metallic Mines, 2019, 42(3):96-99. doi: 10.3969/j.issn.1000-8098.2019.03.026

    JIANG X, LAN X Z, SONG Y H, et al. Adsorption of COD in coking wastewater on acid modified blue coke-based activated carbon[J]. Non-Metallic Mines, 2019, 42(3):96-99. doi: 10.3969/j.issn.1000-8098.2019.03.026

  • 加载中

(8)

(6)

计量
  • 文章访问数:  16
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2023-07-02
刊出日期:  2025-08-25

目录