Adsorption of COD and Ammonia Nitrogen in Landfill Leachate on Red Mud Modified by Sulfonation Coupling
-
摘要:
以对氨基苯磺酸钠和硅烷偶联剂(KH560)为改性剂,对铝业赤泥进行了磺化偶联改性,并用于垃圾渗滤液的吸附处理,研究了溶液pH值、吸附剂投加量、吸附时间、反应温度等对COD和氨氮的吸附影响,采用红外光谱和扫描电镜对改性赤泥进行表征,并就吸附等温线、动力学和热力学特征进行了探讨。结果表明:磺化偶联改性赤泥(SCRM)对渗滤液中COD和氨氮的吸附效果显著提高,在溶液pH值为8,投加量60 g /L,吸附时间90 min,反应温度20 ℃条件下,对COD和氨氮的平衡吸附量可达81.51 mg /g 和19.24 mg /g,去除率分别达87.57%和72.05%。改性后赤泥颗粒孔道结构由浅隙孔转变为贯穿孔,并出现明显的磺化特征基团。SCRM对COD和氨氮的吸附分别属于单层吸附和多层吸附,吸附动力学更符合拟二级动力学模型,且均为吸热、熵增的自发反应过程。
Abstract:Using polysodium p-styrene sulfonate and silane coupling agent (KH560) as modifiers, red mud was modified by sulfonation and coupling, and used in the adsorption treatment of landfill leachate. The effects of pH value, dosage of adsorbent, adsorption time and reaction temperature on the adsorption of COD and ammonia nitrogen were studied. The modified red mud was characterized by infrared spectroscopy and scanning electron microscope and the isotherm, kinetic and thermodynamic of adsorption were also discussed. The results showed that the adsorption effect of red mud modified by sulfonation coupling (SCRM) on COD and ammonia nitrogen in leachate was significantly improved. At the conditions of pH value 8, dosage of 60 g/L, adsorption time of 90 min and reaction temperature of 20 ℃, the equilibrium adsorption capacity of COD and ammonia nitrogen were 81.51 mg/g and 19.24 mg/g, and the removal rate reached 87.57% and 72.05%, respectively. The pore structure of red mud particles changed from shallow pores to penetrating pores, and obvious sulfonated characteristic groups appeared after modification. The adsorption of COD and ammonia nitrogen by SCRM belonged to monolayer adsorption and multilayer adsorption, respectively. The adsorption kinetics of the two adsorption processes were more consistent with the pseudo-second-order kinetic model, and both were endothermic and entropic spontaneous reaction processes.
-
Key words:
- red mud /
- sulfonation coupling /
- adsorption /
- COD /
- ammonia nitrogen
-
-
表 1 原料赤泥的成分 单位:%
Table 1. Composition content of the raw red mud
Na2O SiO2 Al2O3 Fe2O3 CaO TiO2 MgO P2O5 K2O SO3 其他 9.62 19.39 25.66 26.91 9.82 3.82 1.22 0.15 1.35 1.67 0.39 表 2 RM和SCRM的比表面积及孔径分布
Table 2. BET and pore size distribution of RM and SCRM
样品 比表面积SBET
/(m2/g)单位孔体积V
/(cm3/g)孔径R
/nmRM 11.83 0.113 4 22.79 SCRM 146.21 0.465 2 8.96 表 3 吸附动力学模型拟合结果
Table 3. Fitting results of adsorption kinetics model
吸附质 动力学模型 qe/(mg/g) K/(min-1或g/(mg·min)) R2 COD 拟一级 265.19 0.064 80 0.831 7 拟二级 93.98 0.000 46 0.990 7 氨氮 拟一级 15.77 0.046 40 0.656 1 拟二级 21.75 0.002 39 0.991 4 表 4 Langmuir和Freundlich模型等温拟合参数
Table 4. Isothermal fitting parameters of Langmuir and Freundlich models
吸附
指标温度/℃ Langmuir 模型 Freundlich 模型 qm /(mg/g) kl R2 kf n R2 COD 10 156.01 6.13x10-4 0.976 5 2.214 2 1.941 2 0.964 3 20 169.78 11.27x10-4 0.989 3 2.226 5 2.183 5 0.962 0 30 211.42 6.36x10-4 0.971 3 5.489 3 2.546 7 0.919 3 氨氮 10 16.78 5.8x10-4 0.976 6 1.93x10-4 0.492 0 0.995 8 20 40.31 7.2x10-4 0.971 7 1.43x10-3 0.640 1 0.987 8 30 64.35 4.7x10-4 0.983 4 3.99x10-3 0.727 8 0.991 5 表 5 SCRM吸附COD和氨氮的热力学参数
Table 5. Thermodynamic parameters of adsorption of COD and ammonia nitrogen by SCRM
吸附
指标吸附
温度/℃Kc ΔG/
(KJ/mol)ΔH/
(KJ/mol)ΔS/
(J/(mol·K))COD 10 2.39 -2.05 36.16 136.14 20 5.93 -4.34 30 6.65 -4.77 氨氮 10 1.12 -0.27 26.59 96.33 20 2.71 -2.43 30 2.39 -2.20 表 6 同类型改性颗粒对渗滤液指标COD和氨氮的吸附效率对比
Table 6. Comparison of adsorption efficiency of COD and ammonia nitrogen by similar modified particle
粒料类型 改性方法 渗滤液指标脱除效率/% COD 氨氮 赤泥 破碎粒化 23.81 27.35 活性炭 强酸酸化 86.79 - 矿化垃圾 焙烧 58.38 79.77 赤泥* 磺化偶联 87.57 72.05 注:*代表本研究所用方法及吸附效率。 -
[1] 詹静芳, 王珊珊. 中国生活垃圾填埋场甲烷源碳排放量预测评估[J]. 环境科学与技术, 2022, 45(11):147-155.ZHAN J F, WANG S S. Assessment of methane generation and relevant carbon emission from MSW landfills in China[J]. Environmental Science & Technology, 2022, 45(11):147-155.
ZHAN J F, WANG S S. Assessment of methane generation and relevant carbon emission from MSW landfills in China[J]. Environmental Science & Technology, 2022, 45(11):147-155.
[2] 尹文俊, 周伟伟, 王凯, 等. 垃圾渗滤液物化与生化处理工艺技术现状[J]. 环境工程, 2018, 36(2):83-87.YIN W J, ZHOU W W, WANG K, et al. Analysis of physical-chemistry and biochemical treatmenttechnologies on landfill leachate[J]. Environmental Engineering, 2018, 36(2):83-87.
YIN W J, ZHOU W W, WANG K, et al. Analysis of physical-chemistry and biochemical treatmenttechnologies on landfill leachate[J]. Environmental Engineering, 2018, 36(2):83-87.
[3] 张璇, 袁林江, 马保卫, 等. 西安某垃圾填埋场渗滤液生物净化性能改善研究[J]. 水处理技术, 2012, 38(11):69-72.ZHANG X, YUAN L J, MA B W, et al. Study on biological degradation of leachate from a landfill in xi'an[J]. Technology of Water Treatment, 2012, 38(11):69-72. doi: 10.3969/j.issn.1000-3770.2012.11.015
ZHANG X, YUAN L J, MA B W, et al. Study on biological degradation of leachate from a landfill in xi'an[J]. Technology of Water Treatment, 2012, 38(11):69-72. doi: 10.3969/j.issn.1000-3770.2012.11.015
[4] 何耀. 拜尔法赤泥利用现状及高效资源化利用新技术[J]. 矿产综合利用, 2022(4):106-110.HE Y. New technology for efficient resource utilization of red mud from Bayer process[J]. Multipurpose Utilization of Mineral Resources, 2022(4):106-110. doi: 10.3969/j.issn.1000-6532.2022.04.019
HE Y. New technology for efficient resource utilization of red mud from Bayer process[J]. Multipurpose Utilization of Mineral Resources, 2022(4):106-110. doi: 10.3969/j.issn.1000-6532.2022.04.019
[5] CARLO E D, BOULLEMANT A, COURTNEY R. A field assessment of bauxite residue rehabilitation strategies[J]. Science of the Total Environment, 2019, 663:915-926. doi: 10.1016/j.scitotenv.2019.01.376
[6] 冉浩学,谢名淇,朱燕,等. 赤泥在水、土、气环境治理中的应用研究进展[J]. 矿产综合利用, 2022(2):167-176.RAN H X, XIE M Q, ZHU Y, et al. Research progress in the application of red mud in water, soil and air environmental treatment[J]. Multipurpose Utilization of Mineral Resources, 2022(2):167-176. doi: 10.3969/j.issn.1000-6532.2022.02.030
RAN H X, XIE M Q, ZHU Y, et al. Research progress in the application of red mud in water, soil and air environmental treatment[J]. Multipurpose Utilization of Mineral Resources, 2022(2):167-176. doi: 10.3969/j.issn.1000-6532.2022.02.030
[7] DU X L, CUI S S, FANG X, et al. Adsorption of Cd(II), Cu(II), and Zn(II) by granules prepared using sludge from a drinking water purification plant[J]. Journal of Environmental Chemical Engineering, 2020, 8(6):104530. doi: 10.1016/j.jece.2020.104530
[8] 杨世诚, 孙琦, 谌伦建, 等. 赤泥改性及其对丁苯橡胶复合材料微观结构和力学性能的影响[J]. 化工进展, 2019, 38(7):3297-3303.YANG S C, SUN Q, CHEN L J, et al. Effect of modified red mud on microstructure and mechanical properties of butadiene-styrene rubber composites[J]. Chemical Industry and Engineering Progress, 2019, 38(7):3297-3303.
YANG S C, SUN Q, CHEN L J, et al. Effect of modified red mud on microstructure and mechanical properties of butadiene-styrene rubber composites[J]. Chemical Industry and Engineering Progress, 2019, 38(7):3297-3303.
[9] 孙发孟, 白蕊, 张发爱. PolyHIPEs块体的磺化改性及其吸附研究[J]. 化学研究与应用, 2014, 26(8):1266-1271.SUN F M, BAI R, ZHANG F A. Sulfonation and adsorption of PolyHIPEs[J]. Chemical Research and Application, 2014, 26(8):1266-1271. doi: 10.3969/j.issn.1004-1656.2014.08.017
SUN F M, BAI R, ZHANG F A. Sulfonation and adsorption of PolyHIPEs[J]. Chemical Research and Application, 2014, 26(8):1266-1271. doi: 10.3969/j.issn.1004-1656.2014.08.017
[10] 李宸, 鲁镜镜, 蒙梅, 等. 醇胺钛酸酯改性磁化赤泥对Pb(II)的吸附性能研究[J]. 硅酸盐通报, 2022, 41(2):625-633.LI C, LU J J, MENG M, et al. Adsorption property of Pb(II) to magnetic red mud modified by alcohol-amine titanate[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2):625-633. doi: 10.3969/j.issn.1001-1625.2022.2.gsytb202202030
LI C, LU J J, MENG M, et al. Adsorption property of Pb(II) to magnetic red mud modified by alcohol-amine titanate[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2):625-633. doi: 10.3969/j.issn.1001-1625.2022.2.gsytb202202030
[11] 张勃宇, 卢定泽. 改性矿渣处理活性艳蓝KN-R染料废水的能力[J]. 矿产综合利用, 2022, 43(3):42-46,94.ZHANG B Y, LU D Z. Ability of modified slag to treat reactive brilliant blue KN-R dye wastewater[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3):42-46,94. doi: 10.3969/j.issn.1000-6532.2022.03.008
ZHANG B Y, LU D Z. Ability of modified slag to treat reactive brilliant blue KN-R dye wastewater[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3):42-46,94. doi: 10.3969/j.issn.1000-6532.2022.03.008
[12] 段金明, 林锦美, 方宏达, 等. 改性钢渣吸附氨氮和磷的特性研究[J]. 环境工程学报, 2012, 6(1):201-205. DUAN J M, LIN J M, FANG H D, et al. Adsorption characteristic of modified steel-making slag for simultaneous removal of phosphorus and ammonium nitrogen from aqueous solution[J]. Chinese Journal of Environmental Engineering, 2012, 6(1):201-205.
DUAN J M, LIN J M, FANG H D, et al. Adsorption characteristic of modified steel-making slag for simultaneous removal of phosphorus and ammonium nitrogen from aqueous solution[J]. Chinese Journal of Environmental Engineering, 2012, 6(1):201-205.
[13] 刘海伟, 刘云, 王海云, 等. 爬山虎茎粉对水体中氨氮的吸附特性[J]. 中国环境科学, 2010, 30(5):683-688LIU H W, LIU Y, WANG H Y, et al. Adsorption of ammonia nitrogen from aqueous solution by Boston ivy stem powder[J]. China Environmental Science, 2010, 30(5):683-688.
LIU H W, LIU Y, WANG H Y, et al. Adsorption of ammonia nitrogen from aqueous solution by Boston ivy stem powder[J]. China Environmental Science, 2010, 30(5):683-688.
[14] 高雯雯, 苏婷, 弓莹, 等. 载铜活性炭对焦化废水的吸附性能研究[J]. 非金属矿, 2016, 39(1):40-43.GAO W W, SU T, GONG Y, et al. Study of adsorption property of coking wastewater on activated carbon loaded copper[J]. Non-Metallic Mines, 2016, 39(1):40-43. doi: 10.3969/j.issn.1000-8098.2016.01.013
GAO W W, SU T, GONG Y, et al. Study of adsorption property of coking wastewater on activated carbon loaded copper[J]. Non-Metallic Mines, 2016, 39(1):40-43. doi: 10.3969/j.issn.1000-8098.2016.01.013
[15] 骆欣,刘瑞森,徐东耀,等. 热改性粉煤灰对水中铜的动态吸附研究[J]. 矿产综合利用, 2022(3):137-142.LUO X, LIU R S, XU D Y, et al. Study on dynamic adsorption of copper in water by thermally modified fly ash[J]. Multipurpose Utilization of Mineral Resources, 2022(3):137-142. doi: 10.3969/j.issn.1000-6532.2022.03.024
LUO X, LIU R S, XU D Y, et al. Study on dynamic adsorption of copper in water by thermally modified fly ash[J]. Multipurpose Utilization of Mineral Resources, 2022(3):137-142. doi: 10.3969/j.issn.1000-6532.2022.03.024
[16] XU H, HU X J, CHEN Y H, et al. Cd (II) and Pb (II) absorbed on humic acid-iron-pillared bentonite: kinetics, thermodynamics and mechanism of adsorption[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612:126005. doi: 10.1016/j.colsurfa.2020.126005
[17] 姜浩, 廖立兵, 郑红, 等. 赤泥吸附垃圾渗滤液中COD和氨氮的实验研究[J]. 安全与环境工程, 2007, 14(3):69-73.JIANG H, LIAO L B, ZHENG H, et al. Adsorption of COD and ammonia-nitrogen from landfill leachate by red mud[J]. Safety and Environmental Engineering, 2007, 14(3):69-73. doi: 10.3969/j.issn.1671-1556.2007.03.019
JIANG H, LIAO L B, ZHENG H, et al. Adsorption of COD and ammonia-nitrogen from landfill leachate by red mud[J]. Safety and Environmental Engineering, 2007, 14(3):69-73. doi: 10.3969/j.issn.1671-1556.2007.03.019
[18] 蒋绪, 兰新哲, 宋永辉, 等. 酸改性兰炭基活性炭吸附焦化废水中COD研究[J]. 非金属矿, 2019, 42(3):96-99.JIANG X, LAN X Z, SONG Y H, et al. Adsorption of COD in coking wastewater on acid modified blue coke-based activated carbon[J]. Non-Metallic Mines, 2019, 42(3):96-99. doi: 10.3969/j.issn.1000-8098.2019.03.026
JIANG X, LAN X Z, SONG Y H, et al. Adsorption of COD in coking wastewater on acid modified blue coke-based activated carbon[J]. Non-Metallic Mines, 2019, 42(3):96-99. doi: 10.3969/j.issn.1000-8098.2019.03.026
-