褐-赤复合型高磷铁矿直接还原-磁选实验

祝民进, 王广, 易青山, 王静松, 薛庆国. 褐-赤复合型高磷铁矿直接还原-磁选实验[J]. 矿产综合利用, 2025, 46(4): 129-135. doi: 10.12476/kczhly.202311280622
引用本文: 祝民进, 王广, 易青山, 王静松, 薛庆国. 褐-赤复合型高磷铁矿直接还原-磁选实验[J]. 矿产综合利用, 2025, 46(4): 129-135. doi: 10.12476/kczhly.202311280622
ZHU Minjin, WANG Guang, YI Qingshan, WANG Jingsong, XUE Qingguo. Limonite-hematite Composite High-phosphorus Iron Ores by Direct Reduction and Magnetic Separation[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(4): 129-135. doi: 10.12476/kczhly.202311280622
Citation: ZHU Minjin, WANG Guang, YI Qingshan, WANG Jingsong, XUE Qingguo. Limonite-hematite Composite High-phosphorus Iron Ores by Direct Reduction and Magnetic Separation[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(4): 129-135. doi: 10.12476/kczhly.202311280622

褐-赤复合型高磷铁矿直接还原-磁选实验

详细信息
    作者简介: 祝民进(1996-),男,硕士研究生,主要从事复杂难选铁矿研究
    通讯作者: 王广(1985-),男,副教授,主要从事低碳炼铁研究
  • 中图分类号: TD951

Limonite-hematite Composite High-phosphorus Iron Ores by Direct Reduction and Magnetic Separation

More Information
  • 为了实现某褐-赤复合型低品位复杂高磷铁矿的高效利用,进行了基于直接还原-磁选工艺制备铁精矿的实验研究,考查了还原温度、添加剂、还原剂种类等因素对高磷铁矿还原的影响。结果表明:随着温度从1 000 ℃升高到1 150 ℃,还原球团金属化率从28.65%增加到73.11%;碱度从0增加到1.2,还原球团金属化率先增加后降低,金属化率较高为76.52%;球团Na2CO3用量从2%增加到8%,还原球团金属化率先增加后降低,金属化率较高为74.36%;使用城市固废替代部分还原剂,随着置换比从0增加到60%,还原球团的金属化率增加后降低,较高金属化率为83.64%。在碱度为0.6、Na2CO3用量为4%、城市固废置换比为20%、还原温度为1 100 ℃和还原时间为30 min,还原后球团金属化率为83.64%。将上述还原球团进行磨矿磁选,在磨矿粒度小于0.03 mm,磁场强度为100 kA/m时,磁选后精矿产率、铁回收率、金属化率分别为50.81%、78.36%和48.81%。由于金属铁颗粒的尺寸较小,导致精矿产率和铁回收率整体偏低,继续研究如何实现金属铁颗粒的长大非常关键。

  • 加载中
  • 图 1  原矿的XRD

    Figure 1. 

    图 2  原矿的EPMA

    Figure 2. 

    图 3  不同温度下还原球团金属化率

    Figure 3. 

    图 4  不同碱度下还原球团金属化率

    Figure 4. 

    图 5  不同碳酸钠含量下还原球团金属化率

    Figure 5. 

    图 6  不同置换比下还原球团金属化率

    Figure 6. 

    图 7  较优条件下不同温度焙烧样品XRD

    Figure 7. 

    图 8  较优条件下还原球团的微观结构: (a)1 000 ℃, (b)1 050 ℃, (c)1 100 ℃, (d)1 150 ℃, (e)1 200 ℃

    Figure 8. 

    图 9  较优条件下还原球团金属铁中P含量

    Figure 9. 

    图 10  磁选样品的SEM: (a)5 000倍, (b)15 000倍

    Figure 10. 

    表 1  原矿样品化学分析 单位:%

    Table 1.  Chemical analysis of ore samples

    TFeFeOSPSiO2Al2O3CaOMnOMgOTiO2LOI
    32.410.600.630.3018.998.852.800.901.030.3616.0
    下载: 导出CSV

    表 2  无烟煤和城市碳氢固废工业分析 单位:%

    Table 2.  Analysis of anthracite and urban hydrocarbon waste industries

    种类固定碳挥发分灰分
    无烟煤72.435.6920.11
    城市碳氢固废19.0261.5619.42
    下载: 导出CSV

    表 3  城市碳氢固废原料组成 单位:%

    Table 3.  Composition of urban hydrogen waste raw materials

    原料可回收垃圾其他垃圾厨余垃圾
    废塑料废纸木竹类无机物
    配比4540555
    下载: 导出CSV

    表 4  磁选精矿指标分析 单位:%

    Table 4.  Analysis of magnetic separation concentrate indices

    TFeMFe铁产率铁回收率金属化率
    49.9924.4050.8178.3648.81
    下载: 导出CSV
  • [1]

    张翔. 浅谈我国铁矿资源安全的现状和对策[J]. 福建冶金, 2021(3):56-58.ZHANG X. The present situation and countermeasures of iron ore resource safety in China[J]. Fujian Metallurgy, 2021(3):56-58.

    ZHANG X. The present situation and countermeasures of iron ore resource safety in China[J]. Fujian Metallurgy, 2021(3):56-58.

    [2]

    韩跃新, 张小龙, 高鹏, 等. 中国铁矿石选矿技术发展与展望[J]. 金属矿山, 2023(12):1-24.HAN Y X, ZHANG X L, GAO P, et al. Development and prospect of iron ore processing technologies in China[J]. Metal Mine, 2023(12):1-24.

    HAN Y X, ZHANG X L, GAO P, et al. Development and prospect of iron ore processing technologies in China[J]. Metal Mine, 2023(12):1-24.

    [3]

    柳林, 王威, 刘红召, 等. 磁化焙烧-磁选回收某褐铁矿中铁的实验研究[J]. 矿产综合利用, 2019(4):33-37.LIU L, WANG W, LIU H Z, et al. Research on recovery of iron from limonite by magnetization roasting and magnetic separation[J]. Multipurpose Utilization of Mineral Resources, 2019(4):33-37.

    LIU L, WANG W, LIU H Z, et al. Research on recovery of iron from limonite by magnetization roasting and magnetic separation[J]. Multipurpose Utilization of Mineral Resources, 2019(4):33-37.

    [4]

    马长喜, 夏飞龙, 张姗姗, 等. 低品位高硅铝土矿静态焙烧溶出[J]. 矿产综合利用, 2023(2):7-12.MA C X, XIA F L, ZHANG S S, et al. Study on digestion of low grade high silica bauxite by static roasting[J]. Multipurpose Utilization of Mineral Resources, 2023(2):7-12.

    MA C X, XIA F L, ZHANG S S, et al. Study on digestion of low grade high silica bauxite by static roasting[J]. Multipurpose Utilization of Mineral Resources, 2023(2):7-12.

    [5]

    ZHANG H, ZHANG Z, LUO L, et al. Behavior of Fe and P during reduction magnetic roasting-separation of phosphorus-rich oolitic hematite[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2018(41):47-64.

    [6]

    丁湛, 文书明, 李春龙, 等. 铁矿石脱磷硫工艺现状及同步脱除新方法[J]. 矿产综合利用, 2020(3):56-62.DING Z, WEN S M, LI C L, et al. Current status of phosphorus and sulfur removal technology of iron ore and new method of synchronous removal[J]. Multipurpose Utilization of Mineral Resources, 2020(3):56-62.

    DING Z, WEN S M, LI C L, et al. Current status of phosphorus and sulfur removal technology of iron ore and new method of synchronous removal[J]. Multipurpose Utilization of Mineral Resources, 2020(3):56-62.

    [7]

    吴世超, 孙体昌, 寇珏, 等. 组合脱磷剂对高磷铁矿还原焙烧-磁选的影响[J]. 东北大学学报(自然科学版), 2022, 43(3):423-430.WU S C, SUN T C, KOU Y, et al. Effects of combined dephosphorization agents on reduction roasting-magnetic separation of high phosphorus iron ore[J]. Journal of Northeastern University(Natural Science), 2022, 43(3):423-430.

    WU S C, SUN T C, KOU Y, et al. Effects of combined dephosphorization agents on reduction roasting-magnetic separation of high phosphorus iron ore[J]. Journal of Northeastern University(Natural Science), 2022, 43(3):423-430.

    [8]

    周文涛, 韩跃新, 孙永升, 等. 高磷鲕状赤铁矿提铁降磷研究综述[J]. 金属矿山, 2019(2):10-14.ZHOU W T, HAN Y X, SUN Y S, et al. Research prospect of enriched iron and dephosphorization of high phosphorus oolitic hematite[J]. Metal Mine, 2019(2):10-14.

    ZHOU W T, HAN Y X, SUN Y S, et al. Research prospect of enriched iron and dephosphorization of high phosphorus oolitic hematite[J]. Metal Mine, 2019(2):10-14.

    [9]

    Ionkov K, Stoyan G, Armando C, et al. Amenability for processing of oolitic iron ore concentrate for phosphorus removal[J]. Minerals Engineering, 2013(46):119-127.

    [10]

    ZHANG L, Machiela R, Das P, et al. Dephosphorization of unroasted oolitic ores through alkaline leaching at low temperature[J]. Hydrometallurgy, 2019(184):95-102

    [11]

    Xia W, Ren Z, Gao Y. Removal of phosphorus from high phosphorus iron ores by selective HCl leaching method[J]. Journal of Iron and Steel Research International, 2011(18):1-4.

    [12]

    余洪, 谢蕾, 殷佳琪, 等. 鄂西高磷鲕状赤铁矿磁化还原矿物组成及分布规律[J]. 矿物岩石, 2019, 39(3):1-8.YU H, XIE L, YIN J Q, et al. Composition and distribution of magnetized reduction minerals in high phosphorus oolitic hematite in western Hubei Province[J]. J Mineral Petrol, 2019, 39(3):1-8.

    YU H, XIE L, YIN J Q, et al. Composition and distribution of magnetized reduction minerals in high phosphorus oolitic hematite in western Hubei Province[J]. J Mineral Petrol, 2019, 39(3):1-8.

    [13]

    余文. 高磷鲕状赤铁矿含碳球团制备及直接还原-磁选研究[D]. 北京: 北京科技大学, 2015.YU W. Study on the preparation of high-phosphours oolitic hematite-coal composite briquette and its direct reduction-magnetic separation[D]. Beijing: University of Science and Technology Bei-jing, 2015.

    YU W. Study on the preparation of high-phosphours oolitic hematite-coal composite briquette and its direct reduction-magnetic separation[D]. Beijing: University of Science and Technology Bei-jing, 2015.

    [14]

    吴世超, 孙体昌, 李正要, 等. 高磷铁矿石直接还原-磁选研究进展[J]. 金属矿山, 2021(2):58-64.WU S C, SUN T C, LI Z Y, et al. Research progress of direct reduction-magnetic separation of high phosphorus iron ore[J]. Metal Mine, 2021(2):58-64.

    WU S C, SUN T C, LI Z Y, et al. Research progress of direct reduction-magnetic separation of high phosphorus iron ore[J]. Metal Mine, 2021(2):58-64.

    [15]

    宁超. 内配废塑料高磷铁矿含碳团块直接还原-磁选研究[D]. 马鞍山: 安徽工业大学, 2018.NING C. Study of adding waste plastics in carbon bearing briquettes of high phosphorus iron ore by direct reduction and magnetic separation[D]. Maanshan: Anhui University Of Technology, 2018.

    NING C. Study of adding waste plastics in carbon bearing briquettes of high phosphorus iron ore by direct reduction and magnetic separation[D]. Maanshan: Anhui University Of Technology, 2018.

    [16]

    Donskoi E, McElwain D L. Mathematical modelling of non-isothermal reduction in highly swelling iron ore-coal char composite pellet[J]. Ironmaking & Steelmaking, 2001(28):384-389.

    [17]

    成成, 薛庆国, 王静松, 等. 高磷铁矿含磷矿物与脉石相碳热还原机理[J]. 钢铁研究学报, 2016, 28(4):8-15.CHENG C, XUE Q G, WANG J S, et al. Carbothermal reduction mechanism of fluorapatite and gangue in high phosphorus iron ore[J]. Journal of Iron and Steel Research, 2016, 28(4):8-15.

    CHENG C, XUE Q G, WANG J S, et al. Carbothermal reduction mechanism of fluorapatite and gangue in high phosphorus iron ore[J]. Journal of Iron and Steel Research, 2016, 28(4):8-15.

    [18]

    赵立文, 纪文涛, 黄海艺, 等. 黄磷电尘灰真空碳热还原法提镓[J]. 有色金属工程, 2021, 11(8):51-60.ZHAO L W, JI W T, HUANG H Y, et al. Extraction of gallium from yellow phosphorus flue dust by vacuum carbothermal reduction[J]. Nonferrous Metals Engineering, 2021, 11(8):51-60.

    ZHAO L W, JI W T, HUANG H Y, et al. Extraction of gallium from yellow phosphorus flue dust by vacuum carbothermal reduction[J]. Nonferrous Metals Engineering, 2021, 11(8):51-60.

  • 加载中

(10)

(4)

计量
  • 文章访问数:  14
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2023-11-28
刊出日期:  2025-08-25

目录