Limonite-hematite Composite High-phosphorus Iron Ores by Direct Reduction and Magnetic Separation
-
摘要:
为了实现某褐-赤复合型低品位复杂高磷铁矿的高效利用,进行了基于直接还原-磁选工艺制备铁精矿的实验研究,考查了还原温度、添加剂、还原剂种类等因素对高磷铁矿还原的影响。结果表明:随着温度从1 000 ℃升高到1 150 ℃,还原球团金属化率从28.65%增加到73.11%;碱度从0增加到1.2,还原球团金属化率先增加后降低,金属化率较高为76.52%;球团Na2CO3用量从2%增加到8%,还原球团金属化率先增加后降低,金属化率较高为74.36%;使用城市固废替代部分还原剂,随着置换比从0增加到60%,还原球团的金属化率增加后降低,较高金属化率为83.64%。在碱度为0.6、Na2CO3用量为4%、城市固废置换比为20%、还原温度为1 100 ℃和还原时间为30 min,还原后球团金属化率为83.64%。将上述还原球团进行磨矿磁选,在磨矿粒度小于0.03 mm,磁场强度为100 kA/m时,磁选后精矿产率、铁回收率、金属化率分别为50.81%、78.36%和48.81%。由于金属铁颗粒的尺寸较小,导致精矿产率和铁回收率整体偏低,继续研究如何实现金属铁颗粒的长大非常关键。
Abstract:In order to achieve the efficient utilization of a certain limonite-hematite composite high-phosphorus iron ore, experimental research was conducted on the preparation of iron concentrate based on a direct reduction-magnetic separation process. The results indicate that with an increase in temperature from 1 000 °C to 1 150 °C, the metallization ratio of the reduction pellets increased from 28.65% to 73.11%. With an increase in alkalinity from 0 to 1.2, the metallization ratio of the reduction pellets initially increased and then decreased, reaching a maximum of 76.52%. As the dosage of Na2CO3 in the pellets increased from 2% to 8%, the metallization ratio initially increased and then decreased, reaching a maximum of 74.36%. When a portion of the reducing agent was substituted with municipal solid waste, as the substitution ratio increased from 0 to 60%, the metallization ratio of the reduction pellets initially increased and then decreased, reaching a maximum metallization ratio of 83.64%. With an alkalinity of 0.6, Na2CO3 dosage of 4%, municipal solid waste substitution ratio of 20%, reduction temperature of 1 100 °C, and reduction time of 30 min, the metallization ratio of the pellets after reduction reached 83.64%. The previously reduced pellets were subjected to grinding and magnetic separation. With a grinding particle size of less than 0.03 mm and a magnetic field intensity of 100 kA/m, the concentrate yield, iron recovery rate, and metallization ratio after magnetic separation were 50.81%, 78.36%, and 48.81%, respectively. Due to the relatively small size of metallic iron particles, there is an overall lower concentrate yield and recovery rate. Further research on achieving the growth of metallic iron particles is crucial to address this issue.
-
-
表 1 原矿样品化学分析 单位:%
Table 1. Chemical analysis of ore samples
TFe FeO S P SiO2 Al2O3 CaO MnO MgO TiO2 LOI 32.41 0.60 0.63 0.30 18.99 8.85 2.80 0.90 1.03 0.36 16.0 表 2 无烟煤和城市碳氢固废工业分析 单位:%
Table 2. Analysis of anthracite and urban hydrocarbon waste industries
种类 固定碳 挥发分 灰分 无烟煤 72.43 5.69 20.11 城市碳氢固废 19.02 61.56 19.42 表 3 城市碳氢固废原料组成 单位:%
Table 3. Composition of urban hydrogen waste raw materials
原料 可回收垃圾 其他垃圾 厨余垃圾 废塑料 废纸 木竹类 无机物 配比 45 40 5 5 5 表 4 磁选精矿指标分析 单位:%
Table 4. Analysis of magnetic separation concentrate indices
TFe MFe 铁产率 铁回收率 金属化率 49.99 24.40 50.81 78.36 48.81 -
[1] 张翔. 浅谈我国铁矿资源安全的现状和对策[J]. 福建冶金, 2021(3):56-58.ZHANG X. The present situation and countermeasures of iron ore resource safety in China[J]. Fujian Metallurgy, 2021(3):56-58.
ZHANG X. The present situation and countermeasures of iron ore resource safety in China[J]. Fujian Metallurgy, 2021(3):56-58.
[2] 韩跃新, 张小龙, 高鹏, 等. 中国铁矿石选矿技术发展与展望[J]. 金属矿山, 2023(12):1-24.HAN Y X, ZHANG X L, GAO P, et al. Development and prospect of iron ore processing technologies in China[J]. Metal Mine, 2023(12):1-24.
HAN Y X, ZHANG X L, GAO P, et al. Development and prospect of iron ore processing technologies in China[J]. Metal Mine, 2023(12):1-24.
[3] 柳林, 王威, 刘红召, 等. 磁化焙烧-磁选回收某褐铁矿中铁的实验研究[J]. 矿产综合利用, 2019(4):33-37.LIU L, WANG W, LIU H Z, et al. Research on recovery of iron from limonite by magnetization roasting and magnetic separation[J]. Multipurpose Utilization of Mineral Resources, 2019(4):33-37.
LIU L, WANG W, LIU H Z, et al. Research on recovery of iron from limonite by magnetization roasting and magnetic separation[J]. Multipurpose Utilization of Mineral Resources, 2019(4):33-37.
[4] 马长喜, 夏飞龙, 张姗姗, 等. 低品位高硅铝土矿静态焙烧溶出[J]. 矿产综合利用, 2023(2):7-12.MA C X, XIA F L, ZHANG S S, et al. Study on digestion of low grade high silica bauxite by static roasting[J]. Multipurpose Utilization of Mineral Resources, 2023(2):7-12.
MA C X, XIA F L, ZHANG S S, et al. Study on digestion of low grade high silica bauxite by static roasting[J]. Multipurpose Utilization of Mineral Resources, 2023(2):7-12.
[5] ZHANG H, ZHANG Z, LUO L, et al. Behavior of Fe and P during reduction magnetic roasting-separation of phosphorus-rich oolitic hematite[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2018(41):47-64.
[6] 丁湛, 文书明, 李春龙, 等. 铁矿石脱磷硫工艺现状及同步脱除新方法[J]. 矿产综合利用, 2020(3):56-62.DING Z, WEN S M, LI C L, et al. Current status of phosphorus and sulfur removal technology of iron ore and new method of synchronous removal[J]. Multipurpose Utilization of Mineral Resources, 2020(3):56-62.
DING Z, WEN S M, LI C L, et al. Current status of phosphorus and sulfur removal technology of iron ore and new method of synchronous removal[J]. Multipurpose Utilization of Mineral Resources, 2020(3):56-62.
[7] 吴世超, 孙体昌, 寇珏, 等. 组合脱磷剂对高磷铁矿还原焙烧-磁选的影响[J]. 东北大学学报(自然科学版), 2022, 43(3):423-430.WU S C, SUN T C, KOU Y, et al. Effects of combined dephosphorization agents on reduction roasting-magnetic separation of high phosphorus iron ore[J]. Journal of Northeastern University(Natural Science), 2022, 43(3):423-430.
WU S C, SUN T C, KOU Y, et al. Effects of combined dephosphorization agents on reduction roasting-magnetic separation of high phosphorus iron ore[J]. Journal of Northeastern University(Natural Science), 2022, 43(3):423-430.
[8] 周文涛, 韩跃新, 孙永升, 等. 高磷鲕状赤铁矿提铁降磷研究综述[J]. 金属矿山, 2019(2):10-14.ZHOU W T, HAN Y X, SUN Y S, et al. Research prospect of enriched iron and dephosphorization of high phosphorus oolitic hematite[J]. Metal Mine, 2019(2):10-14.
ZHOU W T, HAN Y X, SUN Y S, et al. Research prospect of enriched iron and dephosphorization of high phosphorus oolitic hematite[J]. Metal Mine, 2019(2):10-14.
[9] Ionkov K, Stoyan G, Armando C, et al. Amenability for processing of oolitic iron ore concentrate for phosphorus removal[J]. Minerals Engineering, 2013(46):119-127.
[10] ZHANG L, Machiela R, Das P, et al. Dephosphorization of unroasted oolitic ores through alkaline leaching at low temperature[J]. Hydrometallurgy, 2019(184):95-102
[11] Xia W, Ren Z, Gao Y. Removal of phosphorus from high phosphorus iron ores by selective HCl leaching method[J]. Journal of Iron and Steel Research International, 2011(18):1-4.
[12] 余洪, 谢蕾, 殷佳琪, 等. 鄂西高磷鲕状赤铁矿磁化还原矿物组成及分布规律[J]. 矿物岩石, 2019, 39(3):1-8.YU H, XIE L, YIN J Q, et al. Composition and distribution of magnetized reduction minerals in high phosphorus oolitic hematite in western Hubei Province[J]. J Mineral Petrol, 2019, 39(3):1-8.
YU H, XIE L, YIN J Q, et al. Composition and distribution of magnetized reduction minerals in high phosphorus oolitic hematite in western Hubei Province[J]. J Mineral Petrol, 2019, 39(3):1-8.
[13] 余文. 高磷鲕状赤铁矿含碳球团制备及直接还原-磁选研究[D]. 北京: 北京科技大学, 2015.YU W. Study on the preparation of high-phosphours oolitic hematite-coal composite briquette and its direct reduction-magnetic separation[D]. Beijing: University of Science and Technology Bei-jing, 2015.
YU W. Study on the preparation of high-phosphours oolitic hematite-coal composite briquette and its direct reduction-magnetic separation[D]. Beijing: University of Science and Technology Bei-jing, 2015.
[14] 吴世超, 孙体昌, 李正要, 等. 高磷铁矿石直接还原-磁选研究进展[J]. 金属矿山, 2021(2):58-64.WU S C, SUN T C, LI Z Y, et al. Research progress of direct reduction-magnetic separation of high phosphorus iron ore[J]. Metal Mine, 2021(2):58-64.
WU S C, SUN T C, LI Z Y, et al. Research progress of direct reduction-magnetic separation of high phosphorus iron ore[J]. Metal Mine, 2021(2):58-64.
[15] 宁超. 内配废塑料高磷铁矿含碳团块直接还原-磁选研究[D]. 马鞍山: 安徽工业大学, 2018.NING C. Study of adding waste plastics in carbon bearing briquettes of high phosphorus iron ore by direct reduction and magnetic separation[D]. Maanshan: Anhui University Of Technology, 2018.
NING C. Study of adding waste plastics in carbon bearing briquettes of high phosphorus iron ore by direct reduction and magnetic separation[D]. Maanshan: Anhui University Of Technology, 2018.
[16] Donskoi E, McElwain D L. Mathematical modelling of non-isothermal reduction in highly swelling iron ore-coal char composite pellet[J]. Ironmaking & Steelmaking, 2001(28):384-389.
[17] 成成, 薛庆国, 王静松, 等. 高磷铁矿含磷矿物与脉石相碳热还原机理[J]. 钢铁研究学报, 2016, 28(4):8-15.CHENG C, XUE Q G, WANG J S, et al. Carbothermal reduction mechanism of fluorapatite and gangue in high phosphorus iron ore[J]. Journal of Iron and Steel Research, 2016, 28(4):8-15.
CHENG C, XUE Q G, WANG J S, et al. Carbothermal reduction mechanism of fluorapatite and gangue in high phosphorus iron ore[J]. Journal of Iron and Steel Research, 2016, 28(4):8-15.
[18] 赵立文, 纪文涛, 黄海艺, 等. 黄磷电尘灰真空碳热还原法提镓[J]. 有色金属工程, 2021, 11(8):51-60.ZHAO L W, JI W T, HUANG H Y, et al. Extraction of gallium from yellow phosphorus flue dust by vacuum carbothermal reduction[J]. Nonferrous Metals Engineering, 2021, 11(8):51-60.
ZHAO L W, JI W T, HUANG H Y, et al. Extraction of gallium from yellow phosphorus flue dust by vacuum carbothermal reduction[J]. Nonferrous Metals Engineering, 2021, 11(8):51-60.
-