Preparation of Composite Flocculant by Resource Utilization of Titanium Smelting Wastewater
-
摘要:
以熔炼钛渣酸洗提质降杂过程中产生的盐酸、硫酸体系废水为原料,在不同的pH值、SiO2聚合时间、Fe3+补加量等条件下制备复合絮凝剂。在盐酸体系下,溶液pH值为3.0,常温下SiO2聚合时间4 h,FeCl3·6H2O加入量50.0 g/L,NaClO3加入量5.0 g/L的条件下制备出盐酸体系聚合硅酸铝铁钛絮凝剂(PSAFTC),对模拟浊液的平均除浊率为95.62%。在硫酸体系下,溶液pH值为1.30,Fe2(SO4)3补加量50.0 g/L,NaClO3加入量5.0 g/L的条件下制备出硫酸体系聚合硅酸铝铁钛絮凝剂(PSAFTS),对模拟浊液的平均除浊率为96.99%。PSAFTC絮凝剂的除浊保质期可高达90 d,而PSAFTS絮凝剂的除浊保质期仅7 d,但前者的除浊效果略低于后者。利用熔炼钛渣提质降杂产生的废水制备絮凝剂属于废物的循环再利用,具有显著的经济效益和环境效益。
Abstract:Two kinds of wastewater generated in the decontamination of smelting titanium slag by hydrochloric acid and sulfuric acid washing respectively were utilized as raw materials, and composite flocculants were prepared at different pH values, polymerization durations of SiO2 and recruitment amounts of Fe3+. The average turbidity removal rate of the polysilicate aluminum ferrite titanium flocculant (PSAFTC) on simulated turbid solution prepared at hydrochloric acid system with solution pH value of 3.0, SiO2 polymerization time of 4 h at room temperature, FeCl3-6H2O incorporation of 50.0 g/L and NaClO3 incorporation of 5.0 g/L was 95.62%. The average turbidity removal rate of the polysilicate aluminum ferrite titanium flocculant (PSAFTS) on simulated turbid solution was 96.99% when prepared at the conditions of sulfuric acid system, solution pH value of 1.30, Fe2(SO4)3 addition of 50.0 g/L, and NaClO3 addition of 5.0 g/L. The shelf life of the PSAFTC flocculant can reach 90 days, while that of the PSAFTS flocculant is only 7 days. However, the turbidity removal effect of the former is slightly lower than that of the latter. This paper focuses on preparation of flocculant agents from the wastewater generated from the decontamination of smelting titanium slag. The introduced method possesses significant economic and environmental benefits.
-
-
表 1 熔炼钛渣化学成分单位:%
Table 1. Chemical composition of smelted titanium slags
TiO2 TFe V2O5 SiO2 Al2O3 CaO MgO MnO S 58.16 3.29 0.77 11.06 11.43 2.83 6.70 0.99 0.12 表 2 钛渣除杂废水成分单位:g/L
Table 2. Titanium slag decontamination wastewater composition
Ti4+ Fe3+ SiO32- Al3+ Ca2+ Mg2+ pH值 盐酸体系 0.46 2.00 30.91 5.61 1.14 1.01 0.91 硫酸体系 0.63 2.37 31.54 6.03 0.99 1.19 1.20 表 3 PSAFTC综合条件实验
Table 3. PSAFTC integrated condition test
除浊率/% 96.84 94.71 95.31 平均除浊率/% 95.62 表 4 PSAFTS综合条件实验
Table 4. PSAFTS integrated condition test
除浊率/% 96.58 95.87 98.53 平均除浊率/% 96.99 -
[1] 姜盛基,王刚,严亚萍,等. 絮凝剂对水中污染物去除性能和机理的最新研究进展[J]. 应用化工, 2021, 50(5):1348-1354.JIANG S J, WANG G, YAN Y P, et al. Recent research progress in the removal performance and mechanism of flocculants for pollutants in water[J]. Applied Chemical Industry, 2021, 50(5):1348-1354.
JIANG S J, WANG G, YAN Y P, et al. Recent research progress in the removal performance and mechanism of flocculants for pollutants in water[J]. Applied Chemical Industry, 2021, 50(5):1348-1354.
[2] Wang Xiaomeng, Gan Yonghai, Zhang Shujuan. Improved resistance to organic matter load by compositing a cationic flocculant into the titanium xerogel coagulant[J]. Separation and Purification Technology, 2019, 211:715-722. doi: 10.1016/j.seppur.2018.10.038
[3] Sun Wenquan, Zhou Shengbao, Sun Yongjun, et al. Synthesis and evaluation of cationic flocculant P(DAC-PAPTAC-AM) for flocculation of coal chemical wastewater[J]. Journal of Environmental Sciences, 2021, 99(1):239-248.
[4] Huang Xuesong, Zhang Yingjie, Li Xue, et al. Direct preparation of polysilicic acid flocculant by using pickling waste liquor of metal plate[J]. Journal of Water Process Engineering, 2020, 36:101267. doi: 10.1016/j.jwpe.2020.101267
[5] 李立辉,丛忠奎,陈建设,等. 复合聚硅酸铁混凝剂的制备、性能与混凝机理研究[J]. 金属矿山, 2023(7):268-274.LI L H, CONG Z K, CHEN J S, et al. Study on preparation, properties and coagulation mechanism of composite polysilicate ferric coagulant[J]. Metal Mine, 2023(7):268-274.
LI L H, CONG Z K, CHEN J S, et al. Study on preparation, properties and coagulation mechanism of composite polysilicate ferric coagulant[J]. Metal Mine, 2023(7):268-274.
[6] 颜海燕,张贤明,聂煜东,等. 钒钛磁铁矿制备絮凝剂用于有机污水处理的研究[J]. 环境污染与防治, 2022, 44(2):190-194.YAN H Y, ZHANG X M, NIE Y D, et al. Study on preparation of vanadium-titanium magnetite flocculant for organic wastewater treatment[J]. Environmental Pollution & Control, 2022, 44(2):190-194.
YAN H Y, ZHANG X M, NIE Y D, et al. Study on preparation of vanadium-titanium magnetite flocculant for organic wastewater treatment[J]. Environmental Pollution & Control, 2022, 44(2):190-194.
[7] 黄涛,黄自力,肖硕,等. 铁尾矿酸浸液制备聚氯化铁的试验研究[J]. 无机盐工业, 2024, 56(2):121-126.HUANG T, HUANG Z L, XIAO S, et al. Experimental study on preparation of polyferric chloride from iron tailings acid leaching solution[J]. Inorganic Chemicals Industry, 2024, 56(2):121-126.
HUANG T, HUANG Z L, XIAO S, et al. Experimental study on preparation of polyferric chloride from iron tailings acid leaching solution[J]. Inorganic Chemicals Industry, 2024, 56(2):121-126.
[8] 姚庭安,田弛,彭德强,等. 煤气化渣的高附加值资源化利用研究进展[J]. 环境污染与防治, 2023, 45(11):1583-1586.YAO T A, TIAN C, PENG D Q, et al. Research progress on resource utilization of high value-added coal gasification slag[J]. Environmental Pollution & Control, 2023, 45(11):1583-1586.
YAO T A, TIAN C, PENG D Q, et al. Research progress on resource utilization of high value-added coal gasification slag[J]. Environmental Pollution & Control, 2023, 45(11):1583-1586.
[9] 姜智超,邓景衡,张浩. 钽铌冶炼铁泥制备聚硅酸硫酸铁絮凝剂及其应用[J]. 环境化学, 2017, 36(1):159-166.JIANG Z C, DENG J H, ZHANG H. Preparation of poly-ferric silicate sulfate by using iron sludge from Tantalum and Niobium smelting process and its application[J]. Environmental Chemistry, 2017, 36(1):159-166.
JIANG Z C, DENG J H, ZHANG H. Preparation of poly-ferric silicate sulfate by using iron sludge from Tantalum and Niobium smelting process and its application[J]. Environmental Chemistry, 2017, 36(1):159-166.
[10] 郭庆,陈书文,张军红,等. 微波强化赤泥制备Fe-Al基絮凝剂工艺研究[J]. 矿产综合利用, 2019(4):117-121+82.GUO Q, CHEN S W, ZHANG J H, et al. Study on preparation of Fe/Al-base flocculant from red mud by microwave[J]. Multipurpose Utilization of Mineral Resources, 2019(4):117-121+82. doi: 10.3969/j.issn.1000-6532.2019.04.025
GUO Q, CHEN S W, ZHANG J H, et al. Study on preparation of Fe/Al-base flocculant from red mud by microwave[J]. Multipurpose Utilization of Mineral Resources, 2019(4):117-121+82. doi: 10.3969/j.issn.1000-6532.2019.04.025
[11] 邱慧琴,蓝伟,张洁,等. 利用盐酸酸洗废液制备聚合氯化铁铝混凝剂的研究[J]. 中国给水排水, 2009, 25(1):64-67.QIU H Q, LAN W, ZHANG J, et al. Preparation of polyferric aluminum chloride by waste hydrochloric acid pickling liquor[J]. China Water & Wastewater, 2009, 25(1):64-67.
QIU H Q, LAN W, ZHANG J, et al. Preparation of polyferric aluminum chloride by waste hydrochloric acid pickling liquor[J]. China Water & Wastewater, 2009, 25(1):64-67.
[12] 杨耀辉,惠博,颜世强,等. 全球钒钛磁铁矿资源概况与综合利用研究进展[J]. 矿产综合利用, 2023(4):1-11.YANG Y H, HUI B, YAN S Q, et al. Overview of global vanadium-titanium magnetite resources and comprehensive utilization[J]. Multipurpose Utilization of Mineral Resources, 2023(4):1-11.
YANG Y H, HUI B, YAN S Q, et al. Overview of global vanadium-titanium magnetite resources and comprehensive utilization[J]. Multipurpose Utilization of Mineral Resources, 2023(4):1-11.
[13] 欧杨,孙永升,余建文,等. 钒钛磁铁矿加工利用研究现状及发展趋势[J]. 钢铁研究学报, 2021, 33(4):267-278.OU Y, SUN Y S, YU J W, et al. Research status and development prospect of utilization of vanadium-titanium magnetite[J]. Journal of Iron and Steel Research, 2021, 33(4):267-278.
OU Y, SUN Y S, YU J W, et al. Research status and development prospect of utilization of vanadium-titanium magnetite[J]. Journal of Iron and Steel Research, 2021, 33(4):267-278.
[14] 谢思源,蒋伟,汪胜东,等. 含钛高炉渣氯化铵焙烧活化试验[J]. 有色金属(冶炼部分), 2024(5):68-75.XIE S Y, JIANG W, WANG S D, et al. Activation test of titanium-bearing blast furnace slag by roasting with ammonium chloride[J]. Nonferrous Metals (Extractive Metallurgy), 2024(5):68-75.
XIE S Y, JIANG W, WANG S D, et al. Activation test of titanium-bearing blast furnace slag by roasting with ammonium chloride[J]. Nonferrous Metals (Extractive Metallurgy), 2024(5):68-75.
[15] 芦贻春,李再耕. pH值对硅溶胶凝胶化过程的影响[J]. 耐火材料, 1995(6):326-328+335.LU Y C, LI Z G. pH value influence on the sol's gelling course[J]. Refractories, 1995(6):326-328+335.
LU Y C, LI Z G. pH value influence on the sol's gelling course[J]. Refractories, 1995(6):326-328+335.
-