Calcium Separation from Manganese Sulfate Liquid and Preparation of Manganese Carbonate
-
摘要:
硫酸锰矿液存在低浓度钙离子难分离的问题,不利于硫酸锰矿液的进一步利用。本研究对比了氟化法和氨化法分离硫酸锰矿液中钙的效果,并详细探究了氟化铵用量、pH值调节剂、碳酸铵沉淀剂用量、反应温度以及pH值对钙分离效果及锰离子损失的影响。实验表明,氟化法分离钙的较佳条件为:使用氨水调节pH值到4.5,氟化铵与锰的用量比为3∶1、碳酸铵与锰的用量为3∶4、反应温度为90 ℃。氨化法分离钙的较佳pH值为9.5。值得注意的是,两种方法不仅能分离低浓度的钙,也能使镁的分离率高于90.0%。对比氟化法,氨化法可使钙的分离率达到83.3%,且能将锰离子损失量降到较低。此外,将氨化法分离钙镁后所得的硫酸锰溶液中的锰离子进行进一步利用,成功制备出了高纯的碳酸锰。
Abstract:The problem of difficult separation of low concentration calcium ions in manganese sulfate ore solution is not conducive to its further utilization. This study compared the effects of fluorination and ammonification methods on the separation of calcium from sulfuric acid manganese ore solution, and investigated in detail the effects of ammonium fluoride dosage, pH value regulator, ammonium carbonate precipitant dosage, reaction temperature, and pH value value on calcium separation efficiency and manganese ion loss. Experiments have shown that the optimal conditions for separating calcium by fluorination are: adjusting the pH value to 4.5 using ammonia water, a ratio of 3:1 between ammonium fluoride and manganese, a ratio of 3:4 between ammonium carbonate and manganese, and a reaction temperature of 90 ℃. The optimal pH value for separating calcium by ammonification method is 9.5. It is worth noting that both methods can not only separate low concentrations of calcium, but also achieve a separation rate of over 90% for magnesium. Compared to the fluorination method, the ammonification method can achieve a calcium separation rate of 83.3% and minimize the loss of manganese ions. In addition, high-purity manganese carbonate was successfully prepared by further utilizing the manganese ions in the manganese sulfate solution obtained by the ammonification method for separating calcium and magnesium.
-
-
表 1 不同氟化铵用量下分别加入氨水与氢氧化钡反应后c(Mn/Ca)
Table 1. C(Mn/Ca) after adding ammonia water and barium hydroxide at different dosages of ammonium fluoride
m(NH4F/Mn) 加氢氧化钡c(Mn/Ca) 加氨水c(Mn/Ca) 1 557 455 2 832 626 3 826 1 051 表 2 不同锰初始浓度下各离子沉淀率和c(Mn/Ca)
Table 2. Precipitation efficiencies and c(Mn/Ca) of various ions at different initial manganese concentrations
硫酸锰液稀释倍数 Mn损失率 Ca沉淀率 Mg沉淀率 c(Mn/Ca) 1 7.5% 46.8% 77.0% 644 2 6.0% 27.7% 61.5% 481 5 3.9% 7.8% 39.9% 385 表 3 不同碳酸铵加入量反应后c(Mn/Ca)
Table 3. C (Mn/Ca) after adding different amounts of ammonium carbonate
m((NH4)2CO3/Mn) 0 0.25 0.5 0.75 1 c(Mn/Ca) 370 474 624 659 690 表 4 不同反应温度下各离子沉淀率和c(Mn/Ca)
Table 4. Precipitation efficiencies of various ions at different reaction temperatures
反应温度/℃ Mn损失率/% Ca沉淀率/% Mg沉淀率/% c(Mn/Ca) 50 25.6 43.9 96.3 490 70 30.1 73.9 96.6 991 90 25.3 82.5 97.0 1978 表 5 氨化反应不同pH值下离子沉淀率
Table 5. Ions precipitation efficiencies at different pH value in ammonification reaction
pH值 Mn损失率/% Ca沉淀率/% Mg沉淀率/% 8.9 67.9 14.8 7.0 9.5 87.0 16.7 7.6 10.5 84.2 11.1 20.8 -
[1] 臧日冉, 李致朋, 张丽云, 等. 化学沉淀法去除硫酸锰溶液中K+和Na+的应用研究[J]. 中国锰业, 2024, 42(4):32-35.ZANG R R, LI Z P, ZHANG L Y, et al. Application of chemical precipitation method for removing K+ and Na+ from manganese sulfate solution[J]. China Manganese Industry, 2024, 42(4):32-35.
ZANG R R, LI Z P, ZHANG L Y, et al. Application of chemical precipitation method for removing K+ and Na+ from manganese sulfate solution[J]. China Manganese Industry, 2024, 42(4):32-35.
[2] 史磊, 黄科林, 赵双良, 等. 电池用硫酸锰深度除杂工艺研究进展[J]. 大众科技, 2024, 26(2):115-118.SHI L, HUANG K L, ZHAO S L, et al. Research progress on deep impurity removal process of manganese sulfate for batteries[J]. Popular Technology, 2024, 26(2):115-118.
SHI L, HUANG K L, ZHAO S L, et al. Research progress on deep impurity removal process of manganese sulfate for batteries[J]. Popular Technology, 2024, 26(2):115-118.
[3] 李超群,田宗平,曹健,等. 锰系材料在电池工业上的应用分析[J]. 电源技术, 2018, 42(12):1915-1917.LI C Q, TIAN Z P, CAO J, et al. Analysis of the application of manganese based materials in the battery industry[J]. Power Technology, 2018, 42(12):1915-1917.
LI C Q, TIAN Z P, CAO J, et al. Analysis of the application of manganese based materials in the battery industry[J]. Power Technology, 2018, 42(12):1915-1917.
[4] 鞠孜锐. 锂离子电池镍钴锰三元系正极材料的研究及其在电池中的应用[D]. 青岛: 青岛科技大学,2010.JU Z R. Research on nickel cobalt manganese ternary positive electrode materials for lithium ion batteries and their applications in batteries[D]. Qingdao: Qingdao University of Science and Technology, 2010.
JU Z R. Research on nickel cobalt manganese ternary positive electrode materials for lithium ion batteries and their applications in batteries[D]. Qingdao: Qingdao University of Science and Technology, 2010.
[5] 李丽华. 正极锰酸锂动力电池的制备和性能研究 [D]. 长沙:湖南大学,2012LI L H. Preparation and performance study of positive lithium manganese oxide power battery[D]. Changsha: Hunan University, 2012
LI L H. Preparation and performance study of positive lithium manganese oxide power battery[D]. Changsha: Hunan University, 2012
[6] 陈李泽方, 连芳, 毛磊. 高纯硫酸锰溶液制备中主要杂质钙镁的去除研究 [A]. 2016中国环境科学学会学术年会论文集(第四卷)[C]. 中国环境科学学会: 中国环境科学学会, 2016: 815-819.CHENLI Z F, LIAN F, MAO L, et al. Study on the removal of major impurities calcium and magnesium in the preparation of high-purity manganese sulfate solution [A]. Proceedings of the 2016 Annual Conference of the Chinese Society of Environmental Sciences (Volume 4) [C]. Chinese Society of Environmental Sciences: Chinese Society of Environmental Sciences, 2016: 815-819
CHENLI Z F, LIAN F, MAO L, et al. Study on the removal of major impurities calcium and magnesium in the preparation of high-purity manganese sulfate solution [A]. Proceedings of the 2016 Annual Conference of the Chinese Society of Environmental Sciences (Volume 4) [C]. Chinese Society of Environmental Sciences: Chinese Society of Environmental Sciences, 2016: 815-819
[7] Helen E. Farrah. Solubility of calcium sulfate salts in acidic man - ganese sulfate solutions from 30 to 105C[J]. Hydrometallurgy, 2007(86):13-21.
[8] 刘洪刚,朱国才. 溶剂萃取法脱除锰矿浸出液中钙镁的研究[J]. 中国锰业, 2006, 26(1):34-37.LIU H G, ZHU G C. Study on the removal of calcium and magnesium from manganese ore leachate by solvent extraction method[J]. China Manganese Industry, 2006, 26(1):34-37
LIU H G, ZHU G C. Study on the removal of calcium and magnesium from manganese ore leachate by solvent extraction method[J]. China Manganese Industry, 2006, 26(1):34-37
[9] 陈丽鹃,刘大为,彭天剑,等. 硫酸锰溶液净化工艺研究[J]. 企业技术开发, 2012, 31(4,7):128-129CHEN L J, LIU D W, PENG T J, et al. Research on purification process of manganese sulfate solution[J]. Enterprise Technology Development, 2012, 31(4,7):128-129
CHEN L J, LIU D W, PENG T J, et al. Research on purification process of manganese sulfate solution[J]. Enterprise Technology Development, 2012, 31(4,7):128-129
[10] 苏莎, 楚广, 吴洲华, 等. 硫酸锰溶液中去除钙镁杂质工艺研究[J]. 湖南有色金属, 2016, 32(2):57-61.SU S, CHU G, WU Z H, et al. Research on the process of removing calcium and magnesium impurities from manganese sulfate solution[J]. Hunan Nonferrous Metals, 2016, 32(2):57-61
SU S, CHU G, WU Z H, et al. Research on the process of removing calcium and magnesium impurities from manganese sulfate solution[J]. Hunan Nonferrous Metals, 2016, 32(2):57-61
[11] 陈厚杨, 王开拓, 杨泽,等. 氟化法协同乙醇高效去除硫酸锰溶液中Ca2+、Mg2+[J]. 广西大学学报(自然科学版), 2021, 46(5):1259-1266CHEN H Y, WANG K T, YANG Z,et al. Fluoridation synergistically removes Ca2+, Mg2+ from sulfate-manganese solution with ethanol efficiently[J]. Journal of Guangxi University (Natural Science Edition), 2021, 46(5):1259-1266.
CHEN H Y, WANG K T, YANG Z,et al. Fluoridation synergistically removes Ca2+, Mg2+ from sulfate-manganese solution with ethanol efficiently[J]. Journal of Guangxi University (Natural Science Edition), 2021, 46(5):1259-1266.
[12] 谢雨寻, 叶有明, 谢雪珍,等. 氟化锰沉淀法除去硫酸锰中钙镁的工艺研究[J]. 化工技术与开发, 2020, 49(1):9-11+24XIE Y X, YE Y M, XIE X Z, et al. Research on the process of removing calcium and magnesium from manganese sulfate by manganese fluoride precipitation method[J]. Chemical Technology and Development, 2020, 49(1):9-11+24 doi: 10.3969/j.issn.1671-9905.2020.01.003
XIE Y X, YE Y M, XIE X Z, et al. Research on the process of removing calcium and magnesium from manganese sulfate by manganese fluoride precipitation method[J]. Chemical Technology and Development, 2020, 49(1):9-11+24 doi: 10.3969/j.issn.1671-9905.2020.01.003
-