陕西省志丹县黄土滑坡空间分布规律与形态特征研究

李德珅, 何芝远, 孔嘉旭, 赵李, 武孟, 牟家琦, 郑佳. 陕西省志丹县黄土滑坡空间分布规律与形态特征研究[J]. 地质与资源, 2022, 31(2): 214-220. doi: 10.13686/j.cnki.dzyzy.2022.02.012
引用本文: 李德珅, 何芝远, 孔嘉旭, 赵李, 武孟, 牟家琦, 郑佳. 陕西省志丹县黄土滑坡空间分布规律与形态特征研究[J]. 地质与资源, 2022, 31(2): 214-220. doi: 10.13686/j.cnki.dzyzy.2022.02.012
LI De-shen, HE Zhi-yuan, KONG Jia-xu, ZHAO Li, WU Meng, MU Jia-qi, ZHENG Jia. SPATIAL DISTRIBUTION AND MORPHOLOGICAL CHARACTERISTICS OF LOESS LANDSLIDE IN ZHIDAN COUNTY, SHAANXI PROVINCE[J]. Geology and Resources, 2022, 31(2): 214-220. doi: 10.13686/j.cnki.dzyzy.2022.02.012
Citation: LI De-shen, HE Zhi-yuan, KONG Jia-xu, ZHAO Li, WU Meng, MU Jia-qi, ZHENG Jia. SPATIAL DISTRIBUTION AND MORPHOLOGICAL CHARACTERISTICS OF LOESS LANDSLIDE IN ZHIDAN COUNTY, SHAANXI PROVINCE[J]. Geology and Resources, 2022, 31(2): 214-220. doi: 10.13686/j.cnki.dzyzy.2022.02.012

陕西省志丹县黄土滑坡空间分布规律与形态特征研究

  • 基金项目:
    中央高校基本科研业务费专项资金——长安大学优秀博士学位论文培育资助项目(300102262713)
详细信息
    作者简介: 李德珅(1996——), 男, 硕士, 主要从事工程地质与黄土地质灾害等研究, 通信地址 陕西省西安市碑林区太白北路229号, E-mail//550366651@qq.com
    通讯作者: 孔嘉旭(1994——), 男, 博士, 主要从事工程地质与黄土地质灾害等研究, 通信地址陕西省西安市碑林区太白北路229号, E-mail//1052938693@qq.com
  • 中图分类号: P642.2

SPATIAL DISTRIBUTION AND MORPHOLOGICAL CHARACTERISTICS OF LOESS LANDSLIDE IN ZHIDAN COUNTY, SHAANXI PROVINCE

More Information
  • 滑坡空间分布与形态特征能够反映滑坡发育程度, 为区域内滑坡灾害防治提供依据. 本研究以志丹县黄土滑坡为研究对象, 基于GIS空间分析选取最邻近指数与核密度估计分析志丹县滑坡空间分布规律, 通过统计分析的方法研究滑坡形态特征. 结果表明, 志丹县滑坡最邻近指数约为0.177, 在空间上呈聚集型分布; 核密度估计最大值出现在周河两岸的斜坡地带且呈带状分布, 具有多个高密度聚集区域; 滑坡面密度与点密度的计算结果分别为0.26%和0.19个/km2; 滑坡坡度多集中于70°以上, 坡向多集中于南和南东方向, 坡高则集中于40 m以下的斜坡. 通过聚类分析将研究区滑坡划分为不同类别的角度特征、高度特征、地质环境特征.

  • 加载中
  • 图 1  志丹县保安街道城镇滑坡分布

    Figure 1. 

    图 2  研究区最邻近指数计算结果

    Figure 2. 

    图 3  研究区核密度估计结果

    Figure 3. 

    图 4  滑坡坡度、坡向、坡高直方图

    Figure 4. 

    图 5  聚类分析结果树状图

    Figure 5. 

    表 1  滑坡坡度、坡向、坡高特征分析结果

    Table 1.  Analysis results of slope gradient, aspect and height of landslide

    滑坡形态 散布程度统计量 分布形状统计量 中心趋势统计量
    平均数 中位数 众数 标准差 最大值 最小值 四分位数 偏度系数 峰度系数
    25% 50% 75%
    坡度 57.29 58 70 16.76 80 30 45 58 70 -0.15 -1.29
    坡向 199.57 214 63 88.17 350 15 138 214 260 -0.29 -0.42
    坡高 38.57 25 15 32.87 142 10 15 25 50 1.68 2.25
    下载: 导出CSV

    表 2  聚类分析分类结果

    Table 2.  Classification results of cluster analysis

    滑坡形态特征指标 类别 分类结果
    坡度X1、坡向X2 第一类 角度特征
    坡高X3 第二类 高度特征
    岩土体性质X4、坡型X5 第三类 地质环境特征
    下载: 导出CSV
  • [1]

    许强. 四川省8·13特大泥石流灾害特点、成因与启示[J]. 工程地质学报, 2010, 18(5): 596-608. doi: 10.3969/j.issn.1004-9665.2010.05.002

    Xu Q. The 13 August 2010 catastrophic debris flows in Sichuan Province: Characteristics, genetic mechanism and suggestions[J]. Journal of Engineering Geology, 2010, 18(5): 596-608. doi: 10.3969/j.issn.1004-9665.2010.05.002

    [2]

    黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001

    Huang R Q. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001

    [3]

    Nadim F, Kjekstad O, Peduzzi P, et al. Global landslide and avalanche hotspots[J]. Landslides, 2006, 3(2): 159-173. doi: 10.1007/s10346-006-0036-1

    [4]

    徐张建, 林在贯, 张茂省. 中国黄土与黄土滑坡[J]. 岩石力学与工程学报, 2007, 26(7): 1297-1312. doi: 10.3321/j.issn:1000-6915.2007.07.001

    Xu Z J, Lin Z G, Zhang M S. Loess in China and loess landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(7): 1297-1312. doi: 10.3321/j.issn:1000-6915.2007.07.001

    [5]

    张茂省, 李同录. 黄土滑坡诱发因素及其形成机理研究[J]. 工程地质学报, 2011, 19(4): 530-540. doi: 10.3969/j.issn.1004-9665.2011.04.014

    Zhang M S, Li T L. Triggering factors and forming mechanism of loess landslides[J]. Journal of Engineering Geology, 2011, 19(4): 530-540. doi: 10.3969/j.issn.1004-9665.2011.04.014

    [6]

    张江伟, 李小军, 迟明杰, 等. 滑坡灾害的成因机制及其特征分析[J]. 自然灾害学报, 2015, 24(6): 42-49. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201506005.htm

    Zhang J W, Li X J, Chi M J, et al. Analysis of formation mechanism and characteristics of landslide disasters[J]. Journal of Natural Disasters, 2015, 24(6): 42-49. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201506005.htm

    [7]

    Wang J D, Gu T F, Zhang M S, et al. Experimental study of loess disintegration characteristics[J]. Earth Surface Processes and Landforms, 2019, 44(6): 1317-1329. doi: 10.1002/esp.4575

    [8]

    彭建兵, 林鸿州, 王启耀, 等. 黄土地质灾害研究中的关键问题与创新思路[J]. 工程地质学报, 2014, 22(4): 684-691. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201404018.htm

    Peng J B, Lin H Z, Wang Q Y, et al. The critical issues and creative concepts in mitigation research of loess geological hazards[J]. Journal of Engineering Geology, 2014, 22(4): 684-691. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201404018.htm

    [9]

    许领, 戴福初, 邝国麟, 等. 黄土滑坡典型工程地质问题分析[J]. 岩土工程学报, 2009, 31(2): 287-293. doi: 10.3321/j.issn:1000-4548.2009.02.024

    Xu L, Dai F C, Kwong A K L, et al. Analysis of some special engineering-geological problems of loess landslide[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 287-293. doi: 10.3321/j.issn:1000-4548.2009.02.024

    [10]

    Hu S, Qiu H J, Wang X G, et al. Acquiring high-resolution topography and performing spatial analysis of loess landslides by using low-cost UAVs[J]. Landslides, 2018, 15(3): 593-612. doi: 10.1007/s10346-017-0922-8

    [11]

    孟华君. 基于几何形态的地震滑坡数字化分类研究[D]. 北京: 中国科学院大学, 2014.

    Meng H J. Digital classification of earthquake induced landslide based on geometry shape[D]. Beijing: University of Chinese Academy of Sciences, 2014.

    [12]

    王俊豪, 魏云杰, 梅傲霜, 等. 基于无人机倾斜摄影的黄土滑坡信息多维提取与应用分析[J]. 中国地质, 2021, 48(2): 388-401. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102005.htm

    Wang J H, Wei Y J, Mei A S, et al. Multidimensional extraction of UAV tilt photography-based information of loess landslide and its application[J]. Geology in China, 2021, 48(2): 388-401. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102005.htm

    [13]

    Guzzetti F, Ardizzone F, Cardinali M, et al. Landslide volumes and landslide mobilization rates in Umbria, central Italy[J]. Earth and Planetary Science Letters, 2009, 279(3/4): 222-229.

    [14]

    许冲, 徐锡伟, 吴熙彦, 等. 2008年汶川地震滑坡详细编目及其空间分布规律分析[J]. 工程地质学报, 2013, 21(1): 25-44. doi: 10.3969/j.issn.1004-9665.2013.01.004

    Xu C, Xu X W, Wu X Y, et al. Detailed catalog of landslides triggered by the 2008 Wenchuan earthquake and statistical analyses of their spatial distribution[J]. Journal of Engineering Geology, 2013, 21(1): 25-44. doi: 10.3969/j.issn.1004-9665.2013.01.004

    [15]

    Guo C W, Huang Y D, Yao L K, et al. Size and spatial distribution of landslides induced by the 2015 Gorkha earthquake in the Bhote Koshi River watershed[J]. Journal of Mountain Science, 2017, 14 (10): 1938-1950. doi: 10.1007/s11629-016-4140-y

    [16]

    Nseka D, Kakembo V, Bamutaze Y, et al. Analysis of topographic parameters underpinning landslide occurrence in Kigezi highlands of southwestern Uganda[J]. Natural Hazards, 2019, 99(2): 973-989. doi: 10.1007/s11069-019-03787-x

    [17]

    杨文璐, 邱海军, 裴艳茜, 等. 典型黄土丘陵区浅层黄土滑坡稳定性评价——以延安市志丹县为例[J]. 第四纪研究, 2019, 39(2): 408-419.

    Yang W L, Qiu H J, Pei Y Q, et al. Evaluation of shallow loess landslide stability in typical loess hilly region: A case study of Zhidan County in Yan'an area of Shaanxi Province[J]. Quaternary Sciences, 2019, 39(2): 408-419.

    [18]

    刘朋飞. 黄土高原地区环境变迁与地质灾害关系研究——以延安地区滑坡为例[D]. 西安: 长安大学, 2010.

    Liu P F. Study on the environmental change and geological disasters of the loess plateau region: Take the landslide of Yan'an as an example[D]. Xi'an: Chang'an University, 2010.

    [19]

    李明, 杜继稳, 高维英. 陕北黄土高原区地质灾害与降水关系[J]. 干旱区研究, 2009, 26(4): 599-606. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ200904025.htm

    Li M, Du J W, Gao W Y. Study on the relationship between geological disasters and precipitation in the loess plateau in north Shaanxi Province[J]. Arid Zone Research, 2009, 26(4): 599-606. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ200904025.htm

    [20]

    王新胜, 滕德贵, 谢伟, 等. 山地城市滑坡灾害空间分布特征及影响因素分析[J]. 重庆大学学报, 2020, 43(8): 87-96. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202008010.htm

    Wang X S, Teng D G, Xie W, et al. Spatial distribution characteristics and influencing factors of landslide disasters in mountain cities[J]. Journal of Chongqing University, 2020, 43(8): 87-96. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202008010.htm

    [21]

    董丞妍, 罗明良, 张斌. 四川芦山余震序列空间格局分析[J]. 中国地质灾害与防治学报, 2014, 25(4): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201404011.htm

    Dong C Y, Luo M L, Zhang B. Analysis of spatial pattern of Lushan aftershocks sequence[J]. The Chinese Journal of Geological Hazard and Control, 2014, 25(4): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201404011.htm

    [22]

    Qiu H J, Cui Y F, Hu S, et al. Temporal and spatial distributions of landslides in the Qinba Mountains, Shaanxi Province, China[J]. Geomatics, Natural Hazards and Risk, 2019, 10(1): 599-621. doi: 10.1080/19475705.2018.1536080

    [23]

    张诗茄, 蒋建军, 缪亚敏, 等. 基于SBAS技术的岷江流域潜在滑坡识别[J]. 山地学报, 2018, 36(1): 91-97. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201801010.htm

    Zhang S R, Jiang J J, Miao Y M, et al. Application of the SBAS technique in potential landslide identification in the Minjiang watershed[J]. Mountain Research, 2018, 36(1): 91-97. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201801010.htm

    [24]

    许领, 戴福初. 泾阳南塬黄土滑坡特征参数统计分析[J]. 水文地质工程地质, 2008, 35(5): 28-32. doi: 10.3969/j.issn.1000-3665.2008.05.007

    Xu L, Dai F C. Statistical analysis of the characteristic parameters of loess landslides at the South Jingyang Plateau[J]. Hydrogeology & Engineering Geology, 2008, 35(5): 28-32. doi: 10.3969/j.issn.1000-3665.2008.05.007

    [25]

    桂蕾, 殷坤龙, 王佳佳. 基于聚类分析的滑坡灾害危险性区划研究[J]. 水文地质工程地质, 2013, 40(1): 100-105. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201301023.htm

    Gui L, Yin K L, Wang J J. Landslide hazard zonation based on cluster analysis[J]. Hydrogeology & Engineering Geology, 2013, 40 (1): 100-105. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201301023.htm

    [26]

    何玉花, 张东水, 李燕婷, 等. 基于聚类的黄河上游干流地区滑坡特征研究[J]. 地理空间信息, 2017, 15(11): 60-64. doi: 10.3969/j.issn.1672-4623.2017.11.019

    He Y H, Zhang D S, Li Y T, et al. Research on landslide characteristics in the main stream area of the Yellow River upper reaches based on clustering[J]. Geospatial Information, 2017, 15(11): 60-64. doi: 10.3969/j.issn.1672-4623.2017.11.019

    [27]

    Melchiorre C, Matteucci M, Azzoni A, et al. Artificial neural networks and cluster analysis in landslide susceptibility zonation[J]. Geomorphology, 2008, 94(3/4): 379-400.

    [28]

    樊晓一, 胡晓波, 张睿骁, 等. 开阔型地形条件对滑坡运动距离的影响研究[J]. 自然灾害学报, 2018, 27(5): 188-196. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201805021.htm

    Fan X Y, Hu X B, Zhang R X, et al. Study on the open topography influence on the moving distances of landslides[J]. Journal of Natural Disasters, 2018, 27(5): 188-196. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201805021.htm

    [29]

    王欢, 潘代洪, 靳艳彩. 重庆黔江区斜坡坡度对滑坡发育的贡献率[J]. 重庆交通大学学报(自然科学版), 2014, 33(5): 81-84. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201405018.htm

    Wang H, Pan D H, Jin Y C. Contributing rate of slope gradient to landslide growth in Qianjiang District of Chongqing[J]. Journal of Chongqing Jiaotong University (Natural Science), 2014, 33(5): 81-84. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201405018.htm

    [30]

    Wu C Y, Qiao J P, Wang M. Landslides and slope aspect in the three gorges reservoir area based on GIS and information value model [J]. Wuhan University Journal of Natural Sciences, 2006, 11(4): 773-779. doi: 10.1007/BF02830163

    [31]

    Zeng R Q, Meng X M, Zhang F Y, et al. Characterizing hydrological processes on loess slopes using electrical resistivity tomography: A case study of the Heifangtai Terrace, Northwest China[J]. Journal of Hydrology, 2016, 541: 742-753. doi: 10.1016/j.jhydrol.2016.07.033

  • 加载中

(5)

(2)

计量
  • 文章访问数:  1728
  • PDF下载数:  222
  • 施引文献:  0
出版历程
收稿日期:  2021-04-21
修回日期:  2021-06-11
刊出日期:  2022-04-25

目录