GEOHAZARD SUSCEPTIBILITY ASSESSMENT BASED ON CF-LR MODEL FOR XINYANG CITY, HENAN PROVINCE
-
摘要:
河南省信阳市位于我国地理南北分界线、气候分界线, 是地质灾害多发市, 地质灾害易发性评价对防灾减灾有重要的指导意义. 基于资料分析, 选取坡度、坡向、地形曲率、到水系距离、到断层距离、夜间灯光指数和植被指数共7个指标, 采用CF-LR模型, 对信阳市地质灾害易发性进行了评价. 结果表明, 信阳市地质灾害易发性程度划分为4类: 极高易发区(占全区面积11.39%)、高易发区(19.51%)、中易发区(14.20%)和低易发区(54.90%). 经合理性和准确性检验, 评价结果符合要求, 说明采用的CF-LR模型能够较为客观准确地评价信阳市地质灾害易发性.
Abstract:Xinyang City of Henan Province, located on the north-south boundary of both geography and climate of China, is prone to geological disasters. The assessment of geohazard susceptibility is of great guiding significance for disaster prevention and reduction. Based on the data analysis, 7 indexes including slope gradient, aspect, terrain curvature, distance to water system, distance to faults, nighttime light index and vegetation index are selected and the CF-LR model is used to assess the geohazard susceptibility in Xinyang City. The results show that the geohazard susceptibility in the area can be divided into four categories: extremely high-risk area(accounting for 11.39% of the total area), high-risk area (19.51%), medium-risk area (14.20%) and low-risk area (54.90%). The results are verified to meet the requirements of rationality and accuracy, indicating that the CF-LR model can objectively and accurately assess the geohazard susceptibility in Xinyang City.
-
Key words:
- geohazard /
- susceptibility assessment /
- CF-LR model /
- Henan Province
-
-
表 1 各评价指标确定性系数CF计算结果表
Table 1. Deterministic coefficient calculation results of each evaluation factor
评价因子 分类级别 类别面积/km2 灾害点/处 CF 坡度/(°) <5 15171.04 444 -0.3972 5~10 1578.6 295 0.7406 10~15 1039.5 113 0.5538 15~20 615.02 43 0.3059 20~25 282.99 13 -0.0536 25~30 108.3 4 -0.2392 30~35 30.78 2 0.2531 >35 4.35 0 -1.0000 坡向 平坦 543.99 4 -0.8486 北 4288.99 199 -0.0441 东 5092.53 273 0.0946 南 4341.31 192 -0.0889 西 4563.76 246 0.0996 地形曲率 <-0.5 2.01 0 -1.0000 -0.5~-0.2 130.68 15 0.5774 -0.2~-0.05 1046.05 157 0.6769 -0.05~0.05 16315.26 545 -0.3119 0.05~0.2 130.639 194 0.6735 >0.2 30.19 3 0.5118 到水系距离/m <100 1476.81 102 0.3010 100~200 1048.49 82 0.3827 200~300 1060.21 85 0.3979 300~400 1071.59 76 0.3193 400~500 1045.36 55 0.0822 >500 13225.06 514 -0.1952 到断层距离/km <0.5 1232.50 181 0.6715 0.5~1.5 1964.07 226 0.5806 1.5~3 1928.48 175 0.4681 3~5 1597.28 119 0.3520 5~8 1581.46 134 0.4303 >8 10623.43 79 -0.8461 夜间灯光指数 <0 13541.75 594 -0.0917 0~10 5188.53 306 0.1813 10~20 135.09 11 0.4072 20~30 44.83 3 0.2785 30~40 13.36 0 -1.0000 >40 4.00 0 -1.0000 NDVI <-0.1 1042.77 34 -0.3249 -0.1~0 6183.60 157 -0.4743 0~0.1 6105.38 433 0.3193 0.1~0.2 3139.82 242 0.3736 0.2~0.3 1319.34 40 -0.3723 >0.3 1136.31 8 -0.8543 表 2 评价指标间的相关性系数矩阵
Table 2. Correlation coefficient matrix of evaluation indexes
x1 x2 x3 x4 x5 x6 x7 x1 1.000 -0.008 -0.144 0.123 -0.128 0.120 -0.078 x2 1.000 -0.004 0.001 0.019 -0.019 0.066 x3 1.000 0.083 -0.123 0.026 -0.123 x4 1.000 0.177 -0.097 0.144 x5 1.000 -0.056 -0.002 x6 1.000 0.086 x7 1.000 表 3 逻辑回归结果汇总表
Table 3. Results of logistic regression
项目 回归系数 标准误差 自由度 显著性 坡度 0.975 0.147 1 0.000 坡向 1.333 0.824 1 0.037 地形曲率 0.719 0.165 1 0.000 到水系距离 1.971 0.286 1 0.000 到断层距离 1.759 0.127 1 0.000 夜间灯光指数 1.253 0.521 1 0.016 NDVI 0.847 0.184 1 0.000 常量 -0.176 0.079 1 0.026 表 4 地质灾害易发性评价合理性检验统计表
Table 4. Rationality test results of geohazard susceptibility evaluation
易发性等级 面积/km2 面积比例/% 灾点数量/个 灾害占比/% 灾点密度/(个/100 km2) 极高 2145.30 11.39 84 42.0 3.92 高 3673.03 19.51 71 35.5 1.93 中等 2674.38 14.20 30 15.0 1.12 低 10337.73 54.90 15 7.5 0.15 -
[1] 田春山, 刘希林, 汪佳. 基于CF和Logistic回归模型的广东省地质灾害易发性评价[J]. 水文地质工程地质, 2016, 43(6): 154-161, 170. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201606025.htm
Tian C S, Liu X L, Wang J. Geohazard susceptibility assessment based on CF model and Logistic Regression models in Guangdong[J]. Hydrogeology & Engineering Geology, 2016, 43(6): 154-161, 170. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201606025.htm
[2] 吴常润, 赵冬梅, 刘澄静, 等. 基于GIS和信息量模型的陇川县滑坡易发性评价[J]. 西北地质, 2020, 53(2): 308-320. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202002024.htm
Wu C R, Zhao D M, Liu C J, et al. Landslide susceptibility assessment of Longchuan County based on GIS and information value model[J]. Northwestern Geology, 2020, 53(2): 308-320. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202002024.htm
[3] 王雷, 吴君平, 赵冰雪, 等. 基于GIS和信息量模型的安徽池州地质灾害易发性评价[J]. 中国地质灾害与防治学报, 2020, 31(3): 96-103. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202003017.htm
Wang L, Wu J P, Zhao B X, et al. Susceptibility assessment of geohazards in Chizhou City of Anhui Province based on GIS and informative model[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(3): 96-103. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202003017.htm
[4] 许冲, 戴福初, 姚鑫, 等. 基于GIS与确定性系数分析方法的汶川地震滑坡易发性评价[J]. 工程地质学报, 2010, 18(1): 15-26. doi: 10.3969/j.issn.1004-9665.2010.01.003
Xu C, Dai F C, Yao X, et al. GIS platform and certainty factor analysis method based Wenchuan earthquake-induced landslide susceptibility evaluation[J]. Journal of Engineering Geology, 2010, 18(1): 15-26. doi: 10.3969/j.issn.1004-9665.2010.01.003
[5] 周天伦, 曾超, 范晨, 等. 基于快速聚类-信息量模型的汶川及周边两县滑坡易发性评价[J]. 中国地质灾害与防治学报, 2021, 32(5): 137-150. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202105017.htm
Zhou T L, Zeng C, Fan C, et al. Landslide susceptibility assessment based on K-means cluster information model in Wenchuan and two neighboring counties, China[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 137-150. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202105017.htm
[6] 杨光, 徐佩华, 曹琛, 等. 基于确定性系数组合模型的区域滑坡敏感性评价[J]. 工程地质学报, 2019, 27(5): 1153-1163. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201905027.htm
Yang G, Xu P H, Cao C, et al. Assessment of regional landslide susceptibility based on combined model of certainty factor method[J]. Journal of Engineering Geology, 2019, 27(5): 1153-1163. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201905027.htm
[7] 付树林, 梁丽萍, 刘延国. 基于CF-Logistic模型的雅砻江新龙段地质灾害易发性评价[J]. 水土保持研究, 2021, 28(4): 404-410. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY202104054.htm
Fu S L, Liang L P, Liu Y G. Assessment on geohazard susceptibility in Xinlong section of Yalong River based on CF-logistic model[J]. Research of Soil and Water Conservation, 2021, 28(4): 404-410. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY202104054.htm
[8] 张钟远, 邓明国, 徐世光, 等. 镇康县滑坡易发性评价模型对比研究[J]. 岩石力学与工程学报, 2022, 41(1): 157-171. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202201013.htm
Zhang Z Y, Deng M G, Xu S G, et al. Comparison of landslide susceptibility assessment models in Zhenkang County, Yunnan Province, China[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(1): 157-171. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202201013.htm
[9] 武雪玲, 杨经宇, 牛瑞卿. 一种结合SMOTE和卷积神经网络的滑坡易发性评价方法[J]. 武汉大学学报(信息科学版), 2020, 45(8): 1223-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202008013.htm
Wu X L, Yang J Y, Niu R Q. A landslide susceptibility assessment method using SMOTE and convolutional neural network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1223-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202008013.htm
[10] 朱进守, 邓辉, 苑泉, 等. 藏东高山峡谷地带地质灾害危险性评价——以西藏贡觉县为例[J]. 地质与资源, 2018, 27(3): 272-278. doi: 10.3969/j.issn.1671-1947.2018.03.010
Zhu J S, Deng H, Yuan Q, et al. Risk assessment on the geohazards in alpine and gorge region of Eastern Tibet: A case study of Gonjo County[J]. Geology and Resources, 2018, 27(3): 272-278. doi: 10.3969/j.issn.1671-1947.2018.03.010
[11] 张玘恺, 凌斯祥, 李晓宁, 等. 九寨沟县滑坡灾害易发性快速评估模型对比研究[J]. 岩石力学与工程学报, 2020, 39(8): 1595-1610. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202008009.htm
Zhang Q K, Ling S X, Li X N, et al. Comparison of landslide susceptibility mapping rapid assessment models in Jiuzhaigou County, Sichuan Province, China[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1595-1610. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202008009.htm
[12] 覃乙根, 杨根兰, 江兴元, 等. 基于确定性系数模型与逻辑回归模型耦合的地质灾害易发性评价——以贵州省开阳县为例[J]. 科学技术与工程, 2020, 20(1): 96-103. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202001015.htm
Qin Y G, Yang G L, Jiang X Y, et al. Geohazard susceptibility assessment based on integrated certainty factor model and logistic regression model for Kaiyang, China[J]. Science Technology and Engineering, 2020, 20(1): 96-103. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202001015.htm
[13] Shortliffe E H, Buchanan B G. A model of inexact reasoning in medicine[J]. Mathematical Biosciences, 1975, 23(3/4): 351-379.
[14] 王进, 郭靖, 王卫东, 等. 权重线性组合与逻辑回归模型在滑坡易发性区划中的应用与比较[J]. 中南大学学报(自然科学版), 2012, 43(5): 1932-1939. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201205051.htm
Wang J, Guo J, Wang W D, et al. Application and comparison of weighted linear combination model and logistic regression model in landslide susceptibility mapping[J]. Journal of Central South University (Science and Technology), 2012, 43(5): 1932-1939. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201205051.htm
[15] 刘振辉. 天津市蓟县山区突发性地质灾害特征及其形成机理研究[D]. 北京: 中国地质大学, 2014.
Liu Z H. Research on characteristics and formation mechanism of sudden geological disasters in Tianiin Jixian mountain area[D]. Beijing: China University of Geosciences, 2014.
[16] 秦红富, 谈树成, 施旖奇, 等. 基于CF-LR组合模型的地质灾害易发性评价——以云南省宁洱哈尼族彝族自治县为例[J]. 人民长江, 2022, 53(7): 119-127. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202207018.htm
Qin H F, Tan S C, Shi Y Q, et al. Geological hazard susceptibility assessment based on CF&LR combined model: Case of Ning'er Hani and Yi Autonomous County, Yunnan Province[J]. Yangtze River, 2022, 53(7): 119-127. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202207018.htm
[17] 罗路广, 裴向军, 黄润秋, 等. GIS支持下CF与Logistic回归模型耦合的九寨沟景区滑坡易发性评价[J]. 工程地质学报, 2021, 29(2): 526-535. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202102022.htm
Luo L G, Pei X J, Huang R Q, et al. Landslide susceptibility assessment in Jiuzhaigou scenic area with GIS based on certainty factor and logistic regression model[J]. Journal of Engineering Geology, 2021, 29(2): 526-535. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202102022.htm
[18] 屠水云, 张钟远, 付弘流, 等. 基于CF与CF-LR模型的地质灾害易发性评价[J]. 中国地质灾害与防治学报, 2022, 33(2): 96-104. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202202012.htm
Tu S Y, Zhang Z Y, Fu H L, et al. Geological hazard susceptibility evaluation based on CF and CF-LR model[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 96-104. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202202012.htm
[19] 黄敬军, 甘义群, 缪世贤, 等. 江苏省地质环境区划评价指标体系初步研究[J]. 中国地质, 2011, 38(6): 1599-1606. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201106021.htm
Huang J J, Gan Y Q, Miao S X, et al. A preliminary study of the evaluation index system for geo-environment regionalization in Jiangsu [J]. Geology in China, 2011, 38(6): 1599-1606. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201106021.htm
[20] 郭邦梅, 权开兄. 基于ArcGIS的青海隆务河流域灾害风险性评价[J]. 地质与资源, 2019, 28(3): 289-292. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8409.shtml
Guo B M, Quan K X. ArcGIS-based disaster risk assessment of Longwu river basin in Qinghai Province[J]. Geology and Resources, 2019, 28(3): 289-292. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8409.shtml
-