HYDROCHEMICAL CHARACTERISTICS OF GUANTAO GEOTHERMAL RESERVOIR IN EASTERN JIYUAN-KAIFENG SAG: Implication for Its Formation
-
摘要:
对济源-开封凹陷东段馆陶组地热水进行分析研究发现, 其水化学性质为中性水、盐水、极硬水, 以Cl-Na型水为主, 其化学特征、控制因素、特征系数等与上部明化镇组地热水、第四系地下水及地表水差异明显. 馆陶组地热水为陆相含盐岩地层沉积型溶滤水, 赋存介质为砂岩孔隙, 区域发育的断裂、裂隙为其提供导热和运移的通道, 在大地热流的传导增温下, 不断发生溶滤作用、蒸发浓缩作用等, 同时热储层封闭性良好, 热水运移较停滞, 还原性彻底, 浓缩程度高. 开封断隆内馆陶组地热水的以上特征与开封-兰考断陷相比程度更高.
Abstract:The analysis of geothermal water of Guantao Formation in eastern Jiyuan-Kaifeng sag shows that the geothermal water is hydrochemically neutral water, salt water and extra-hard water, mainly Cl-Na type, and its chemical characteristics, controlling factors and characteristic coefficients are significantly different from those in upper Minghuazhen Formation, Quaternary groundwater and surface water. The geothermal water in Guantao Formation is sedimentary type of lixiviation water in continental salt rock strata, occurred in sandstone pores, with regional faults and fissures as channels for heat conduction and migration, and terrestrial heat flow for heat conduction and warming, accompanied by constant lixiviation, evaporation and concentration. On the other hand, due to the well sealed geothermal reservoir, the migration of geothermal water is much stagnant, which contribute to the complete reducibility and higher concentration degree of geothermal water. Compared with Kaifeng-Lankao fault depression, the geothermal water in Guantao Formation of Kaifeng fault uplift shows higher degree of reducibility and concentration.
-
Key words:
- geothermal resources /
- Guantao Formation /
- hydrochemistry /
- groundwater /
- geothermal reservoir /
- Jiyuan-Kaifeng sag /
- Henan Province
-
-
表 1 馆陶组地热井基本情况
Table 1. Basic information of geothermal wells in Guantao Formation
地热井编号 开封断隆 开封-兰考断陷 KF1 KF2 LK1 LK2 LK3 LK4 LK5 LK6 LK7 LK8 顶板埋深/m 1520 1450 1288 1556 1300 1312 1578 1624 1261 1382 盖层地温梯度/(℃/hm) 2.79 2.92 4.06 3.55 3.25 3.50 3.53 3.31 3.31 3.76 地层厚度/m 881.36 692.48 615.80 330.83 684.00 672.00 371.97 668.10 646.22 643.75 含水层总厚度/m 351.81 252.35 156.10 270.31 197.58 233.00 320.96 306.90 353.30 358.40 静水位埋深/m 78.9 58.1 38.5 51.5 55.0 49.9 52.0 49.5 47.0 54.5 出水温度/℃ 84 82 74 72 76 75 72 73 70 74 出水量/(m3/h) 96 80 103 97 130 107 120 126 131 115 单位涌水量/[m3/(h·m)] 2.08 2.21 11.49 4.20 11.82 4.13 6.35 6.67 6.78 5.35 抽水降深/m 46.1 36.1 9.0 23.1 11.0 26.0 18.9 18.9 19.3 21.5 表 2 地热水主要离子测试结果
Table 2. Test results of main ions in geothermal water
分区 地热井 取水层 pH TDS/(mg/L) 总硬度/(mg/L) (Na++K+)/
(mmol/L)Ca2+/
(mmol/L)Mg2+/
(mmol/L)Cl-/
(mmol/L)SO42-/
(mmol/L)HCO3-/
(mmol/L)水化学类型 开封断隆 KF1 Ng 6.7 31393.00 10969.00 339.72 174.00 44.79 542.47 3.42 1.85 Cl-Na·Ca KF2 Ng 7.2 17421.7 3932.00 221.90 61.33 17.30 298.51 1.38 1.77 Cl-Na *CK1 Nm 8.3 722.16 20.00 8.30 0.20 0.20 0.98 0.90 7.30 HCO3-Na *CK2 Q 7.6 617.92 21.90 4.27 4.05 3.76 2.11 2.29 7.69 HCO3-Na·Ca·Mg 开封-兰考断陷 LK1 Ng 7.1 14210.00 421.28 205.73 35.08 7.01 228.35 13.04 2.42 Cl-Na LK2 Ng 7.5 10507.93 1234.09 147.79 20.48 4.18 167.49 12.65 2.86 Cl-Na LK3 Ng 7.5 12478.9 1540.40 173.11 24.85 5.93 199.98 12.62 2.75 Cl-Na LK4 Ng 7.3 18718.50 3256.68 286.26 55.51 9.58 297.48 8.40 2.66 Cl-Na LK5 Ng 6.7 17720.00 1870.00 124.42 31.73 5.59 260.37 14.37 2.31 Cl-Na LK6 Ng 6.7 19710.00 1957.00 168.28 31.00 6.25 275.52 12.45 2.31 Cl-Na LK7 Ng 7.8 12232.92 1562.32 184.15 25.07 6.15 186.23 14.47 3.30 Cl-Na LK8 Ng 6.8 20158.00 1981.00 132.82 40.07 5.10 276.82 12.51 2.05 Cl-Na *CK3 Nm 8.1 1594.65 34.50 26.25 0.43 0.26 12.07 5.66 9.08 Cl·HCO3-Na *CK4 Q 7.7 1030.00 476.30 9.92 2.52 7.13 4.82 1.13 14.23 HCO3-Na·Mg 地表水 *CK5 黄河水 7.8 886.35 271.17 3.72 3.10 2.05 2.38 3.15 3.31 HCO3·SO4·Cl-Na·Ca 注: *数据引自文献[20-22]; 总硬度为以CaCO3计; CO32-的含量为0, 未列入表中. 表 3 研究区地下水特征系数
Table 3. Characteristic coefficients of groundwater in the study area
分区 编号 取水层 变质系数 脱硫系数 盐化系数 开封断隆 KF1 Ng 0.62 0.63 292.59 KF2 Ng 0.73 0.46 168.65 CK1 Nm 8.43 91.84 0.13 CK2 Q 2.03 108.59 0.27 开封-兰考断陷 LK1 Ng 0.9 5.71 94.24 LK2 Ng 0.88 7.55 58.66 LK3 Ng 0.86 6.31 72.72 LK4 Ng 0.96 2.83 111.71 LK5 Ng 0.47 5.52 112.67 LK6 Ng 0.6 4.52 119.22 LK7 Ng 0.98 7.77 56.5 LK8 Ng 0.47 4.52 135.1 CK3 Nm 2.17 46.9 1.33 CK4 Q 2.05 23.47 0.34 -
[1] 倪昆, 卢磊, 陈飞阳, 等. 河南省沉积盆地水热型地热资源特征及潜力评估研究[J]. 地下水, 2021, 43(1): 13-16, 113. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU202101005.htm
Ni K, Lu L, Chen F Y, et al. Study on the characteristics and potential evaluation of hydrothermal geothermal resources in Sedimentary basins of Henan Province[J]. Ground Water, 2021, 43(1): 13-16, 113. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU202101005.htm
[2] 黄光寿, 郭丽丽, 黄凯. 河南省沉积盆地区五大构造单元地热地质特征[J]. 地质与资源, 2020, 29(2): 172-179. doi: 10.3969/j.issn.1671-1947.2020.02.009
Huang G S, Guo L L, Huang K. Geothermal geological characteristics of five tectonic units in the sedimentary basins of Henan Province[J]. Geology and Resources, 2020, 29(2): 172-179. doi: 10.3969/j.issn.1671-1947.2020.02.009
[3] 周振江. 河南省武陟县地热资源的合理开发利用与保护[J]. 西部探矿工程, 2013, 25(6): 151-153. doi: 10.3969/j.issn.1004-5716.2013.06.050
Zhou Z J. Development, utilization and protection of geothermal resources in Wuzhi County, Henan Province[J]. West-China Exploration Engineering, 2013, 25(6): 151-153. (in Chinese) doi: 10.3969/j.issn.1004-5716.2013.06.050
[4] 魏庆龙, 闫鸿庆, 李东东. 河南省原阳县地热地质条件及水化学特征研究[J]. 地下水, 2018, 40(3): 44-46. doi: 10.3969/j.issn.1004-1184.2018.03.014
Wei Q L, Yan H Q, Li D D. Geothermal geological conditions and hydrochemical characteristics of Yuanyang County, Henan Province [J]. Ground Water, 2018, 40(3): 44-46. (in Chinese) doi: 10.3969/j.issn.1004-1184.2018.03.014
[5] 朱卫民, 韩国童, 庞良. 郑州市区地热储存条件与开发现状分析[J]. 地下水, 2016, 38(6): 54-55. doi: 10.3969/j.issn.1004-1184.2016.06.018
Zhu W M, Han G T, Pang L. Analysis of geothermal storage conditions and development status in Zhengzhou[J]. Ground Water, 2016, 38(6): 54-55. (in Chinese) doi: 10.3969/j.issn.1004-1184.2016.06.018
[6] 范浩敏. 河南省郑汴新区(中牟段)地热资源特征及开发利用前景[J]. 地下水, 2021, 43(5): 78-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU202105025.htm
Fan H M. Characteristics of geothermal resources in Zhengbian New Area (Zhongmu Section) of Henan Province and its development and utilization prospect[J]. Ground Water, 2021, 43(5): 78-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU202105025.htm
[7] 高楠安, 汪新伟, 梁海军, 等. 冀鲁豫三省交界处临清坳陷大名次凹陷地热系统成因模式及开发潜力[J]. 中国地质, 2023, 50(4): 1149-1162. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202304013.htm
Gao N A, Wang X W, Liang H J, et al. Genetic mechanism of geothermal system in Daming Sag, Linqing Depression in the junction of Hebei, Shandong and Henan provinces and its exploration potential[J]. Geology in China, 2023, 50(4): 1149-1162. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202304013.htm
[8] 白博文, 平建华, 赵继昌, 等. 河南淮阳县地热流体化学特征及其成因分析[J]. 中国地质, 2022, 49(3): 956-966. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202203019.htm
Bai B W, Ping J H, Zhao J C, et al. Chemical characteristics and causes analysis of the geothermal fluid in Huaiyang County, Henan Province[J]. Geology in China, 2022, 49(3): 956-966. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202203019.htm
[9] 齐玉峰. 河南省开封凹陷区地热田地热资源分析[J]. 西南科技大学学报, 2009, 24(3): 75-78. doi: 10.3969/j.issn.1671-8755.2009.03.015
Qi Y F. Analysis on geothermal resources in Kaifeng Depression geothermal field of Henan Province[J]. Journal of Southwest University of Science and Technology, 2009, 24(3): 75-78. doi: 10.3969/j.issn.1671-8755.2009.03.015
[10] 张心勇, 马传明. 开封凹陷区地温场特征分析[J]. 工程勘察, 2009, 37(10): 44-49. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200910011.htm
Zhang X Y, Ma C M. Geothermal field's characteristics analysis in Kaifeng depression[J]. Geotechnical Investigation & Surveying, 2009, 37(10): 44-49. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200910011.htm
[11] 李莲花, 王小青, 孟萍. 开封深部地热水地质条件及开发前景[J]. 南水北调与水利科技, 2013, 11(2): 107-109.
Li L H, Wang X Q, Meng P. Geological conditions and development prospect analysis of deep geothermal water in Kaifeng City[J]. South- to-North Water Transfers and Water Science & Technology, 2013, 11(2): 107-109.
[12] 李尧, 齐玉峰, 黄烜, 等. 兰考县新近系热储赋存规律及开发适宜性研究[J]. 河南科学, 2021, 39(10): 1615-1623. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKX202110012.htm
Li Y, Qi Y F, Huang X, et al. The occurrence regularities and development suitability of Neogene thermal reservoir in Lankao County[J]. Henan Science, 2013, 39(10): 1615-1623. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKX202110012.htm
[13] 宋前进, 王刚, 许一川, 等. 深层地热能开发及其对地热水流场的影响——以兰考县深层地热能开发为例[J]. 煤田地质与勘探, 2021, 49(2): 184-193. doi: 10.3969/j.issn.1001-1986.2021.02.023
Song Q J, Wang G, Xu Y C, et al. Development of deep geothermal energy and its influence on geothermal water flow field: Taking the development of deep geothermal energy in Lankao County for an example[J]. Coal Geology & Exploration, 2021, 49(2): 184-193. doi: 10.3969/j.issn.1001-1986.2021.02.023
[14] 肖雄, 李尧, 杨珍, 等. 河南省兰考县新生界地热资源特征及开发利用前景[J]. 地下水, 2022, 44(2): 72-74, 110. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU202202023.htm
Xiao X, Li Y, Yang Z, et al. Characteristics and prospect of geothermal resources in Lankao County Henan Province[J]. Ground Water, 2022, 44(2): 72-74, 110. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU202202023.htm
[15] 王志铄, 马兴全. 郑州-开封断裂新生代活动特征[J]. 地震地质, 2018, 40(3): 511-522. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201803001.htm
Wang Z S, Ma X Q. The activity characteristics of Zhengzhou-Kaifeng fault during Kainozoic[J]. Seismology and Geology, 2018, 40(3): 511-522. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201803001.htm
[16] 张维, 闫晋龙, 马畅, 等. 河南新商断裂对地热资源形成的控制作用及资源潜力分析[J]. 矿产勘查, 2020, 11(12): 2647-2652. doi: 10.3969/j.issn.1674-7801.2020.12.009
Zhang W, Yan J L, Ma C, et al. Control of Xinshang fault on geothermal resources in Henan Province and its resource potential[J]. Mineral Exploration, 2020, 11(12): 2647-2652. doi: 10.3969/j.issn.1674-7801.2020.12.009
[17] 邵炳松, 朱怀亮, 胡志明, 等. 济源-开封坳陷西南部电性结构研究及地热资源远景区预测[J]. 地质与勘探, 2021, 57(3): 572-583. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202103010.htm
Shao B S, Zhu H L, Hu Z M, et al. Electrical structure and forecast of geothermal prospective areas in the southwest of the Jiyuan-Kaifeng depression[J]. Geology and Exploration, 2021, 57(3): 572-583. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202103010.htm
[18] 齐玉峰, 王文娟, 李尧. 地质构造对黄河下游(河南段)地热分布的影响分析[J]. 华北水利水电大学学报(自然科学版), 2020, 41(5): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL202005011.htm
Qi Y F, Wang W J, Li Y. Analysis of the influence of geological structure on geothermal distribution in lower reaches of the Yellow River in Henan Province[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2020, 41(5): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL202005011.htm
[19] 罗梅. 中牟凹陷地热资源成因机理及其特征研究[D]. 郑州: 郑州大学, 2020.
Luo M. Genetic mechanism of geothermal resources in Zhongmu Depression and its characteristics[D]. Zhengzhou: Zhengzhou University, 2020.
[20] 张良. 开封市城区地热水资源评价及可持续开发利用研究[D]. 焦作: 河南理工大学, 2011.
Zhang L. Study on resource assessment and sustainable development and utilization of geothermal water in Kaifeng City[D]. Jiaozuo: Henan Polytechnic University, 2011.
[21] 仝长水, 靳孟贵, 王献坤, 等. 黄河故道兰考段地下水水化学特征[J]. 工程勘察, 2011, 39(12): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201112010.htm
Tong C S, Jin M G, Wang X K, et al. Chemical characteristics of groundwater in Lankao section along abandoned area of Yellow River [J]. Geotechnical Investigation & Surveying, 2011, 39(12): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201112010.htm
[22] 杜青辉, 屈吉鸿, 宋全香. 开封市区近黄河地区地下水化学特征及成因分析[J]. 中国农村水利水电, 2020(9): 172-176, 181. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD202009034.htm
Du Q H, Qu J H, Song Q X. An analysis of chemical characteristics and causes of groundwater near the Yellow River in Kaifeng City[J]. China Rural Water and Hydropower, 2020(9): 172-176, 181. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD202009034.htm
[23] Truesdell A H. Effects of physical processes on geothermal fluids[C]// Application of geochemistry in geothermal reservoir development. Rome: UNITAR/UNDP Publication, 1991: 71-92.
[24] 史启朋, 宋帅良, 孟甲, 等. 山东省菏泽凸起地热田岩溶地热水水化学水平演化特征[J]. 中国岩溶, 2021, 40(2): 310-318. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202102016.htm
Shi Q P, Song S L, Meng J, et al. Hydrochemical evolution of Karst geothermal water in the Heze uplift geothermal field, Shandong Province[J]. Carsologica Sinica, 2021, 40(2): 310-318. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202102016.htm
[25] Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090.
[26] Rao N S, Subrahmanyam A, Kumar S R, et al. Geochemistry and quality of groundwater of Gummanampadu Sub-Basin, Guntur District, Andhra Pradesh, India[J]. Environmental Earth Sciences, 2012, 67(5): 1451-1471.
[27] Gaillardet J, Dupré B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers [J]. Chemical Geology, 1999, 159(1/4): 3-30.
[28] Li S L, Chetelat B, Yue F J, et al. Chemical weathering processes in the Yalong River draining the eastern Tibetan Plateau, China[J]. Journal of Asian Earth Sciences, 2014, 88: 74-84.
[29] 曾妍妍, 周金龙, 贾瑞亮, 等. 新疆祁漫塔格地区地表水水化学特征及成因分析[J]. 干旱区资源与环境, 2017, 31(6): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201706011.htm
Zeng Y Y, Zhou J L, Jia R L, et al. Hydrochemical characteristics and causes of surface water in Qimantage area, Xinjiang[J]. Journal of Arid Land Resources and Environment, 2017, 31(6): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201706011.htm
[30] 张保健. 鲁西北地区地下热水的水文地球化学特征及形成条件研究[D]. 北京: 中国地质大学(北京), 2011.
Zhang B J. Hydrogeochemical characteristics and formation conditions of the geothermal water in northwestern Shandong Province[D]. Beijing: China University of Geosciences, 2011.
[31] 李虎, 夏玲晓, 江国胜. 天津地区奥陶系地热流体离子比例系数分析研究[J]. 地下水, 2015, 37(5): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201505012.htm
Li H, Xia L X, Jiang G S. Analysis on geothermal fluid ion ratios in Tianjin area[J]. Ground Water, 2015, 37(5): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201505012.htm
[32] 孙红丽, 王贵玲, 蔺文静. 西宁盆地地下热水的TDS分布特征及富集机理[J]. 地质科技通报, 2022, 41(1): 278-287, 299. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202201030.htm
Sun H L, Wang G L, Lin W J. Distribution characteristics and enrichment mechanism of TDS geothermal water in Xining Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 278- 287, 299. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202201030.htm
[33] 邢一飞, 王慧群, 李捷, 等. 雄安新区地热水的化学场特征及影响因素分析[J]. 中国地质, 2022, 49(6): 1711-1722. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202206001.htm
Xing Y F, Wang H Q, Li J, et al. Chemical field of geothermal water in Xiong'an New Area and analysis of influencing factors[J]. Geology in China, 2022, 49(6): 1711-1722. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202206001.htm
[34] 张萌, 蔺文静, 刘昭, 等. 西藏谷露高温地热系统水文地球化学特征及成因模式[J]. 成都理工大学学报(自然科学版), 2014, 41(3): 382-392. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201403015.htm
Zhang M, Lin W J, Liu Z, et al. Hydrogeochemical characteristics and genetic model of Gulu high-temperature geothermal system in Tibet, China[J]. Journal of Chengdu University of Technology (Science &Technology Edition), 2014, 41(3): 382-392. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201403015.htm
[35] 郭宁, 刘昭, 男达瓦, 等. 西藏昌都觉拥温泉水化学特征及热储温度估算[J]. 地质论评, 2020, 66(2): 499-509. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202002022.htm
Guo N, Liu Z, Nan D W, et al. The characteristics and reservoir temperatures of hot springs in Jueyong, Chamdo, Xizang (Tibet)[J]. Geological Review, 2020, 66(2): 499-509. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202002022.htm
[36] 龚晓洁, 田良河, 袁锡泰. 河南平原区天然地热流体同位素特征对其成生环境的揭示[J]. 科学技术与工程, 2019, 19(25): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201925006.htm
Gong X J, Tian L H, Yuan X T. Isotopic characteristics and forming environment of natural geothermal fluids in the plain area of Henan Province[J]. Science Technology and Engineering, 2019, 19(25): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201925006.htm
-