RISK ASSESSMENT OF KARST GROUNDWATER DEVELOPMENT AND UTILIZATION IN THE SINAN SECTION OF WUJIANG RIVER BASED ON CATASTROPHE THEORY
-
摘要:
水资源的储备和利用程度极大地影响着人类社会的发展. 乌江干流思南段岩溶地下水资源丰富, 但地下水埋藏较深, 利用率较低. 突发的极端干旱天气及长期的"三废"排放量增加, 使得区域内可利用的岩溶地下水资源面临严峻挑战. 本研究围绕地下水开发利用风险问题, 基于突变理论, 建立地下水开发利用风险评价指标体系, 综合考虑区域自然背景条件、地下水开发现状和社会经济发展3个方面因素, 将研究区划分为8个水资源子评价区, 并设置了包括目标层、准则层(7项指标)和指标层(13项指标)三级指标评价体系, 运用综合风险值5级评价方法进行地下水开发利用风险评价. 评价结果表明, 研究区地下水资源开发利用的综合风险值为0.8345~0.9271, 处于中险-重险范围, 地下水开发风险较大, 各评价区域风险排序为: Ⅳ<Ⅰ1<Ⅶ<Ⅱ<Ⅵ<Ⅰ2<Ⅴ<Ⅲ. 评价结果可为区域地下水可持续开发利用提供理论依据.
Abstract:The reserve and utilization of water resources greatly affect the social development. Despite the abundant karst groundwater resources in the Sinan section of Wujiang River, the utilization rate is low for its deep burial. Due to sudden extreme dry weather and increasing industrial pollution, the karst groundwater resources available in the region face severe challenges. Focusing on the problem of groundwater development and utilization risk, the study establishes the groundwater development and utilization risk evaluation index system on the basis of catastrophe theory. According to the regional natural background conditions, groundwater development status and socioeconomic development, the study area is divided into 8 water resources evaluation sub-zones, and a three-level index evaluation system including target layer, criterion layer(7 indicators) and index layer(13 indicators) is set up, with a five-grade comprehensive evaluation method to assess the risk of groundwater development and utilization. The results show that the comprehensive risk values of groundwater resources development and utilization range from 0.8345 to 0.9271, in medium-severe risk. The risk ranking of each sub-zone is as follows: Ⅳ < Ⅰ1 < Ⅶ < Ⅱ < Ⅵ < Ⅰ2 < Ⅴ < Ⅲ. The evaluation results can provide theoretical basis for sustainable development and utilization of regional groundwater.
-
-
表 1 初等突变模型
Table 1. Elementary catastrophe models
突变种类 势函数 控制变量维数 状态变量维数 折叠型 f(x)=x3+ax 1 1 尖点型 f(x)=x4+ax2+bx 2 1 燕尾型 f(x)=x5+ax3+bx2+cx 3 1 蝴蝶型 f(x)=x5+ax4+bx3+cx2+dx 4 1 椭圆型脐点突变 f(x)= $ \frac{1}{3}$ x3-xy2-a(x2+y2)-bx+cy3 2 双曲型脐点突变 f(x)=x3+y2+axy-bx-cy 3 2 抛物型脐点突变 f(x)=y4+x2y+ax2+by2-cx-dy 4 2 表 2 研究区地下水开发利用风险评价指标值
Table 2. Risk assessment index values for groundwater development and utilization in the study area
指标 单位 Ⅰ1 Ⅰ2 Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ C1 m/d 0.23 0.18 0.17 0.15 0.23 0.17 0.12 0.1 C2 m 58 47 36 50 55 22 48 51 C3 m 27 29 39.5 27.3 47 22.5 21 19 C4 / 0.2 0.18 0.19 0.1 0.18 0.08 0.19 0.17 C5 mm 1097.3 1097.3 1097.3 1097.3 1097.3 1097.3 1097.3 1097.3 C6 104 m3/(km·a) 18.26 5.46 17.18 6.47 16.65 7.66 17.29 8.04 C7 104 m3/(km·a) 5.11 2.41 3.35 2.53 6.25 3.38 6.60 2.02 C8 % 25.43 24.95 18.97 36.03 16.37 48.32 20.48 20.9 C9 / 2 1 2 2 2 1 1 2 C10 % 20 20 20 20 20 20 20 20 C11 % 7.01 7.01 7.01 7.01 7.01 7.01 7.01 7.01 C12 % 11.9 11.9 11.9 11.9 11.9 11.9 11.9 11.9 C13 % 22 20 21 24 45 22 25 22 注:以上数据为2011年收集、实测. 表 3 乌江干流思南段岩溶地下水开发利用风险评价指标转化值
Table 3. Conversion values of risk assessment indexes for karst groundwater development and utilization
指标 Ⅰ1 Ⅰ2 Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ C1 0.141 0.448 0.509 0.632 0.141 0.509 0.816 0.939 C2 0.132 0.382 0.632 0.314 0.200 0.950 0.359 0.291 C3 0.286 0.344 0.647 0.295 0.864 0.156 0.113 0.055 C4 0.135 0.270 0.203 0.811 0.270 0.946 0.203 0.338 C5 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 C6 0.120 0.964 0.192 0.897 0.226 0.819 0.184 0.794 C7 0.395 0.891 0.719 0.869 0.185 0.712 0.121 0.963 C8 0.278 0.266 0.110 0.554 0.043 0.874 0.150 0.161 C9 0.846 0.077 0.846 0.846 0.846 0.077 0.077 0.846 C10 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 C11 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 C12 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 C13 0.127 0.063 0.095 0.190 0.857 0.127 0.222 0.127 表 4 地下水开发利用各风险评价指标突变级数及综合评价结果
Table 4. Catastrophe series of risk assessment indexes and comprehensive evaluation results for groundwater development and utilization
指标 Ⅰ1 Ⅰ2 Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ C1 0.376 0.669 0.714 0.795 0.376 0.714 0.903 0.969 C2 0.509 0.725 0.858 0.679 0.585 0.983 0.711 0.663 C3 0.731 0.766 0.897 0.737 0.964 0.629 0.579 0.484 C4 0.368 0.520 0.450 0.900 0.520 0.973 0.450 0.581 C5 0.707 0.707 0.707 0.707 0.707 0.707 0.707 0.707 C6 0.347 0.982 0.438 0.947 0.476 0.905 0.429 0.891 C7 0.734 0.962 0.896 0.954 0.570 0.893 0.495 0.987 C8 0.528 0.516 0.332 0.745 0.206 0.935 0.387 0.401 C9 0.920 0.277 0.920 0.920 0.920 0.277 0.277 0.920 C10 0.707 0.707 0.707 0.707 0.707 0.707 0.707 0.707 C11 0.707 0.707 0.707 0.707 0.707 0.707 0.707 0.707 C12 0.794 0.794 0.794 0.794 0.794 0.794 0.794 0.794 C13 0.597 0.502 0.556 0.661 0.962 0.597 0.687 0.597 B1 0.376 0.669 0.714 0.679 0.376 0.629 0.579 0.484 B2 0.368 0.520 0.450 0.900 0.520 0.973 0.450 0.581 B3 0.707 0.707 0.707 0.707 0.707 0.707 0.707 0.707 B4 0.540 0.972 0.667 0.951 0.523 0.899 0.462 0.939 B5 0.528 0.516 0.332 0.745 0.206 0.935 0.387 0.401 B6 0.920 0.277 0.920 0.920 0.920 0.277 0.277 0.920 B7 0.707 0.707 0.707 0.707 0.707 0.707 0.707 0.707 A1 0.613 0.804 0.766 0.824 0.613 0.793 0.761 0.696 A2 0.726 0.652 0.576 0.863 0.454 0.652 0.622 0.633 A3 0.699 0.668 0.685 0.720 0.821 0.699 0.729 0.699 A 0.8654 0.8893 0.8725 0.9271 0.8345 0.8907 0.8834 0.8691 表 5 地下水开发利用风险状态等级划分标准
Table 5. Grading criteria for groundwater development and utilization risk status
等级 微险 轻险 中险 重险 特险 数值 R≤0.3 0.3<R≤0.5 0.5<R≤0.85 0.85<R≤0.95 0.95≤R -
[1] 李中斌. 风险管理解读[M]. 北京: 石油工业出版社, 2000: 5-15.
Li Z B. Explication of risk management[M]. Beijing: Petroleum Industry Press, 2000: 5-15.
[2] Voetsch R J. The current state of project risk management practices among risk sensitive project management professionals[D]. Washington: The George Washington University, 2004.
[3] 田辉, 郭晓东, 刘强, 等. 大庆市地下水开采现状及环境地质问题探讨[J]. 地质与资源, 2012, 21(1): 139-142, doi: 10.13686/j.cnki.dzyzy.2012.01.027.
Tian H, Guo X D, Liu Q, et al. Study on the groundwater exploitation and geological environment problems in Daqing City[J]. Geology and Resources, 2012, 21(1): 139-142, doi: 10.13686/j.cnki.dzyzy.2012.01.027.
[4] 黄长生, 周耘, 张胜男, 等. 长江流域地下水资源特征与开发利用现状[J]. 中国地质, 2021, 48(4): 979-1000. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202104002.htm
Huang C S, Zhou Y, Zhang S N, et al. Groundwater resources in the Yangtze River Basin and its current development and utilization[J]. Geology in China, 2021, 48(4): 979-1000. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202104002.htm
[5] 孙跃, 岳运华, 刘中刚, 等. 基于GMS的傍河应急水源地地下水资源评价[J]. 地质与资源, 2019, 28(1): 72-77, doi: 10.13686/j.cnki.dzyzy.2019.01.012.
Sun Y, Yue Y H, Liu Z G, et al. Evaluation on the groundwater resources in riverside emergency water source based on GMS[J]. Geology and Resources, 2019, 28(1): 72-77, doi: 10.13686/j.cnki.dzyzy.2019.01.012.
[6] Nazar A M, Hall W A, Albertson M L. Risk avoidance objective in water resources[J]. Journal of the Water Resources Planning and Management Division, 1981, 107(1): 201-209. doi: 10.1061/JWRDDC.0000189
[7] Hillenbrand Ⅲ C J. Groundwater-risk analysis of New York utilizing GIS technology[D]. New York: City University of New York, 2002.
[8] Ashrafi F M. Evaluation of the Potential contamination risk to groundwater posed by municipal landfill leachate[D]. Regina: University of Regina, 2004.
[9] 刘道祥. 水资源系统风险管理研究综述[J]. 西北水电, 2003(1): 5-8. doi: 10.3969/j.issn.1006-2610.2003.01.002
Liu D X. Summary for risk management of water resources system[J]. Northwest Hydropower, 2003(1): 5-8. doi: 10.3969/j.issn.1006-2610.2003.01.002
[10] 冶雪艳. 黄河下游悬河段地下水开发风险评价与调控研究[D]. 长春: 吉林大学, 2006.
Ye X Y. Study on evaluation and regulation of groundwater pumping risk in perched section of down-Yellow River[D]. Changchun: Jilin University, 2006.
[11] 杨会峰, 孟瑞芳, 李文鹏, 等. 海河流域地下水资源特征和开发利用潜力[J]. 中国地质, 2021, 48(4): 1032-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202104006.htm
Yang H F, Meng R F, Li W P, et al. Groundwater resources of the Haihe River Basin and its development potential[J]. Geology in China, 2021, 48(4): 1032-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202104006.htm
[12] 项国圣. 黑河中游张掖盆地地下水开发风险评价及调控[D]. 兰州: 兰州大学, 2011.
Xiang G S. Risk assessment and regulation of groundwater development in Zhangye Basin of the middle reaches of the Heihe River[D]. Lanzhou: Lanzhou University, 2011.
[13] 党爽. 贵阳地区岩溶地下水资源现状及开发利用风险评价[D]. 贵阳: 贵州大学, 2015.
Dang S. Regulation of karst groundwater utilization risk and resources present situation of Guiyang summary[D]. Guiyang: Guizhou University, 2015.
[14] 袁道先. 岩溶地区的地质环境和水文生态问题[J]. 南方国土资源, 2003(1): 22-25. doi: 10.3969/j.issn.1672-321X.2003.01.008
Yuan D X. Geological environment and hydrogeological ecological issues in karst areas[J]. Nanfang Guotu Ziyuan, 2003(1): 22-25. (in Chinese) doi: 10.3969/j.issn.1672-321X.2003.01.008
[15] 袁道先. 我国西南岩溶石山的环境地质问题[J]. 世界科技研究与发展, 1997, 19(5): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKF199705009.htm
Yuan D X. On the environmental and geologic problems of karst mountains and rocks in the South-West China[J]. World Sci-Tech R&D, 1997, 19(5): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKF199705009.htm
[16] 夏日元, 卢海平, 曹建文, 等. 南方岩溶区地下水资源特征与水资源保障对策[J]. 中国地质, 2022, 49(4): 1139-1153. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202204008.htm
Xia R Y, Lu H P, Cao J W, et al. Characteristics of groundwater resources of karst areas in the Southern China and water resources guarantee countermeasures[J]. Geology in China, 2022, 49(4): 1139-1153. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202204008.htm
[17] Poston T, Stewart I. Catastrophe theory and its applications[M]. London: Pitman, 1978: 35-48.
[18] Arnold V I. Catastrophe theory[M]. 2nd ed. Berlin: Springer, 1986.
[19] 阿诺德. 突变理论[M]. 周燕华, 译. 北京: 高等教育出版社, 1990: 1-26.
Arnold V I. Catastrophe theory[M]. Zhou Y H, trans. Beijing: Higher Education Press, 1990: 1-26.
[20] 施玉群. 突变评价法在水利系统经营效益评估中的应用[J]. 水利经济, 1997, 15(2): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SLJJ199702010.htm
Shi Y Q. Application of catastrophe evaluation method in evaluating the operating benefits of water conservancy systems[J]. Journal of Economics of Water Resources, 1997, 15(2): 52-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLJJ199702010.htm
[21] 何平, 赵子都. 突变理论及其应用[M]. 大连: 大连理工大学出版社, 1989: 3-9.
He P, Zhao Z D. Catastrophe theory and its applications[M]. Dalian: Dalian University of Technology Press, 1989: 3-9. (in Chinese)
[22] 都兴富. 突变理论在经济领域的应用(上、下册)[M]. 北京: 电子科技大学出版社, 1994: 10-25.
Du X F. The application of catastrophe theory in the economic field (Part 1, Part 2)[M]. Beijing: University of Electronic Science and Technology of China Press, 1994: 10-25. (in Chinese)
[23] 蒋琳琳, 张炅囧, 倪福全. 基于突变理论的农村饮水安全风险评价[J]. 人民珠江, 2016, 37(7): 98-101. https://www.cnki.com.cn/Article/CJFDTOTAL-RMZJ201607021.htm
Jiang L L, Zhang J J, Ni F Q. Risk evaluation of rural drinking water safety based on catastrophe theory[J]. Pearl River, 2016, 37(7): 98-101. https://www.cnki.com.cn/Article/CJFDTOTAL-RMZJ201607021.htm
[24] 何金平, 李珍照. 基于环境突变理论综合评价的水电站建设方案优选[J]. 水电站设计, 1998, 14(1): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SDSJ801.002.htm
He J P, Li Z Z. Hydroelectric plant construction scheme optimum selection synthetically assessed on basis of environment catastrophe theory[J]. Design of Hydroelectric Power Station, 1998, 14(1): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SDSJ801.002.htm
[25] 青春炳, 苟兴华. 灾害评价、风险评价和灾情评价[J]. 大自然探索, 1991, 10(2): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DZRT199102015.htm
Qing C B, Gou X H. Disaster evaluation, risk evaluation and damage evaluation[J]. Exploration of Nature, 1991, 10(2): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DZRT199102015.htm
[26] 潘华盛, 张桂华, 董淑华. 黑龙江省洪水灾害等级评估模型——模糊综合评价法[J]. 黑龙江气象, 2000, 17(2): 1-4, 14, doi: 10.14021/j.cnki.hljqx.2000.02.001.
Pan H S, Zhang G H, Dong S H. An estimation model of flood grade in Heilongjiang Province: The method of fuzzy overall evaluation[J]. Heilongjiang Meteorology, 2000, 17(2): 1-4, 14, doi:10.14021/j.cnki.hljqx.2000.02.001.
-