致密砂岩储层微观孔隙结构表征研究——以鄂尔多斯盆地东南部地区延长组为例

龚建涛, 白艳军. 致密砂岩储层微观孔隙结构表征研究——以鄂尔多斯盆地东南部地区延长组为例[J]. 地质与资源, 2024, 33(5): 662-670. doi: 10.13686/j.cnki.dzyzy.2024.05.006
引用本文: 龚建涛, 白艳军. 致密砂岩储层微观孔隙结构表征研究——以鄂尔多斯盆地东南部地区延长组为例[J]. 地质与资源, 2024, 33(5): 662-670. doi: 10.13686/j.cnki.dzyzy.2024.05.006
GONG Jian-tao, BAI Yan-jun. CHARACTERIZATION OF MICROSCOPIC PORE STRUCTURE IN THGHT SANDSTONE RESERVOIR: A Case Study of Yanchang Formation in Southeastern Ordos Basin[J]. Geology and Resources, 2024, 33(5): 662-670. doi: 10.13686/j.cnki.dzyzy.2024.05.006
Citation: GONG Jian-tao, BAI Yan-jun. CHARACTERIZATION OF MICROSCOPIC PORE STRUCTURE IN THGHT SANDSTONE RESERVOIR: A Case Study of Yanchang Formation in Southeastern Ordos Basin[J]. Geology and Resources, 2024, 33(5): 662-670. doi: 10.13686/j.cnki.dzyzy.2024.05.006

致密砂岩储层微观孔隙结构表征研究——以鄂尔多斯盆地东南部地区延长组为例

  • 基金项目:
    中国博士后基金面上项目“延长油区东南部低渗透油藏微裂缝发育与分布”(2017M623221)
详细信息
    作者简介: 龚建涛(1985-), 男, 硕士, 高级工程师, 从事石油勘探研究, 通信地址陕西省延安市宝塔区枣园路延长石油, E-mail//306767863@qq.com
  • 中图分类号: P618.13

CHARACTERIZATION OF MICROSCOPIC PORE STRUCTURE IN THGHT SANDSTONE RESERVOIR: A Case Study of Yanchang Formation in Southeastern Ordos Basin

  • 微观孔喉结构是控制致密砂岩储层储集能力和流体流动的重要因素之一. 选取鄂尔多斯盆地东南部地区晚三叠世延长组致密砂岩储层代表性样品20个, 展开了铸体薄片、扫描电镜、高压压汞及储层岩石物理特征等一系列实验, 运用分形理论研究孔喉结构特征, 并分析了分形维数与物性、孔喉结构参数和矿物含量之间的关系. 研究结果表明: 根据分形曲线可将样品的孔喉结构分为介孔和微孔, 计算出对应的分形维数, 推测介孔贡献了主要的孔隙度和渗透率; 介孔的分形维数与储层物性及孔隙结构各类参数相关性好, 其分形维数越大, 孔隙分布越不均匀, 连通性越差, 非均质性越强; 石英和绿泥石对微孔和介孔虽有支撑作用, 但绿泥石对介孔的堵塞也较为严重; 长石的溶蚀虽然增加了微孔的数量, 但也在一定程度上增加了储层的非均质性.

  • 加载中
  • 图 1  研究区区域构造位置图

    Figure 1. 

    图 2  研究区地层综合柱状图

    Figure 2. 

    图 3  鄂尔多斯盆地东南地区延长组岩石类型三角图

    Figure 3. 

    图 4  研究区孔渗分布相关性图

    Figure 4. 

    图 5  样品N1分形曲线

    Figure 5. 

    图 6  样品N2和N3分形曲线

    Figure 6. 

    图 7  样品N4和N5分形曲线

    Figure 7. 

    图 8  分形维数与物性之间的关系

    Figure 8. 

    图 9  分形维数与孔喉结构参数之间的关系

    Figure 9. 

    图 10  分形维数与矿物含量之间的关系

    Figure 10. 

    表 1  孔隙度频率分布和渗透率频率分布

    Table 1.  Distribution frequency of porosity and permeability

    样品编号 孔隙度贡献率/% 渗透率贡献率/%
    介孔 微孔 介孔 微孔
    N1 85 15 99.99 0.01
    N2 78 22 99.84 0.16
    N3 54 46 99.75 0.25
    N4 64 36 99.75 0.25
    N5 64 35 99.93 0.07
    下载: 导出CSV

    表 2  分形维数计算结果

    Table 2.  Calculation results of fractal dimensions

    样品编号 大孔 微孔
    D1 R2 φ1/% K1 D2 R2 φ2/% K2
    N1 2.69 0.9977 8.23 0.9999 2.47 0.9829 1.39 0.0001
    N2 2.61 0.9747 2.74 0.9984 2.36 0.9938 0.76 0.0016
    N3 2.81 0.9697 4.80 0.9975 2.24 0.9901 4.08 0.0025
    N4 2.72 0.9885 4.21 0.9975 2.40 0.9909 2.29 0.0025
    N5 2.80 0.9330 4.50 0.9993 2.23 0.9820 2.50 0.0007
    下载: 导出CSV
  • [1]

    何发岐, 张宇, 王付斌, 等. 鄂尔多斯盆地中国石化"十三五"油气勘探进展与新领域[J]. 中国石油勘探, 2022, 27(5): 1-12.

    He F Q, Zhang Y, Wang F B, et al. Petroleum exploration progress and new field of Sinopec in Ordos Basin during the 13th Five-Year Plan period[J]. China Petroleum Exploration, 2022, 27(5): 1-12.

    [2]

    田景春, 梁庆韶, 王峰, 等. 陆相湖盆致密油储集砂体成因及发育模式——以鄂尔多斯盆地上三叠统长6油层组为例[J]. 石油与天然气地质, 2022, 43(4): 877-888.

    Tian J C, Liang Q S, Wang F, et al. Genesis and development model of tight oil reservoir sand body in continental lacustrine basin: A case study on the Upper Triassic Chang 6 pay zone, Ordos Basin[J]. Oil & Gas Geology, 2022, 43(4): 877-888.

    [3]

    任大忠, 刘登科, 周兆华, 等. 致密砂岩油藏水驱油效率及微观影响因素研究——以鄂尔多斯盆地华庆地区三叠系长6储层为例[J]. 电子显微学报, 2019, 38(4): 364-375. doi: 10.3969/j.issn.1000-6281.2019.04.008

    Ren D Z, Liu D K, Zhou Z H, et al. Research on waterflooding efficiency of tight sandstone reservoir and its microscopic influence factors: Taking the Triassic Chang 6 Member in Huaqing area, Ordos Basin, NW China as an example[J]. Journal of Chinese Electron Microscopy Society, 2019, 38(4): 364-375. doi: 10.3969/j.issn.1000-6281.2019.04.008

    [4]

    黎盼, 孙卫, 王震, 等. 鄂尔多斯盆地西峰油田长81储层微观孔隙结构特征及其对水驱油特征的影响[J]. 现代地质, 2018, 32(6): 1194-1202.

    Li P, Sun W, Wang Z, et al. Features of microscopic pore structure and their influence on oil displacement efficiency in Chang 81 reservoir of Xifeng Oilfield, Ordos Basin[J]. Geoscience, 2018, 32(6): 1194-1202.

    [5]

    赵淑霞, 孙爽, 周银邦, 等. 基于精细岩相约束的致密低渗储层参数建模研究——以红河油田92井区长812致密砂岩储层为例[J]. 地质与资源, 2019, 28(5): 460-469. http://www.dzyzy.cn/article/id/8421

    Zhao S X, Sun S, Zhou Y B, et al. Parameter modeling of low permeability tight reservoir based on fine lithofacies constraint: A case study of C-812 tight sandstone reservoir in No. 92 wellblock of Honghe Oilfield[J]. Geology and Resources, 2019, 28(5): 460-469. http://www.dzyzy.cn/article/id/8421

    [6]

    郭轩豪, 谭成仟, 赵军辉, 等. 成岩作用对致密砂岩储层微观结构的影响差异——以鄂尔多斯盆地姬塬和镇北地区长7段为例[J]. 天然气地球科学, 2021, 32(6): 826-835.

    Guo X H, Tan C Q, Zhao J H, et al. Different influence of diagenesis on micro pore-throat characteristics of tight sandstone reservoirs: Case study of the Triassic Chang 7 Member in Jiyuan and Zhenbei areas, Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(6): 826-835.

    [7]

    张全培, 王海红, 刘美荣, 等. 超低渗透储层全孔径分布及其分形特征研究[J]. 中国矿业大学学报, 2020, 49(6): 1137-1149.

    Zhang Q P, Wang H H, Liu M R, et al. Study of the full pore size distribution and fractal characteristics of ultra-low permeability reservoir[J]. Journal of China University of Mining & Technology, 2020, 49(6): 1137-1149.

    [8]

    郝栋, 杨晨, 刘晓东, 等. 鄂尔多斯盆地白豹油田致密砂岩储层孔喉结构及NMR分形特征[J]. 西安石油大学学报(自然科学版), 2021, 36(5): 34-45.

    Hao D, Yang C, Liu X D, et al. Pore throat structure and NMR fractal characteristics of tight sandstone reservoirs in Baibao Oilfield, Ordos Basin[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2021, 36(5): 34-45.

    [9]

    郭惠, 赵红格, 陈江萌, 等. 鄂尔多斯盆地西部古峰庄地区三叠系延长组裂缝特征及其对低渗透油藏的控制作用[J]. 中国地质, 2024, 51(1): 73-88.

    Guo H, Zhao H G, Chen J M, et al. Fracture characteristics of Triassic Yanchang Formation in the Gufengzhuang area, western Ordos Basin and its control on low permeability reservoirs[J]. Geology in China, 2024, 51(1): 73?88.

    [10]

    王俊杰, 吴胜和, 肖淑明, 等. 东营凹陷沙三中亚段浊积砂岩储层微观孔喉分布特征[J]. 中国石油大学学报(自然科学版), 2021, 45(4): 12-21.

    Wang J J, Wu S H, Xiao S M, et al. Distribution characteristics of micro pore throat size of turbidite sandstone reservoir in middle sub-member of 3rd Member, Shahejie Formation in Dongying Depression[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(4): 12-21.

    [11]

    冯动军, 肖开华. 恒速压汞及核磁共振技术在四川盆地西部致密砂岩储层评价中的应用[J]. 石油实验地质, 2021, 43(2): 368-376.

    Feng D J, Xiao K H. Constant velocity mercury injection and nuclear magnetic resonance in evaluation of tight sandstone reservoirs in western Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(2): 368-376.

    [12]

    刘玲, 张创, 孙明. 志丹油田纸坊北油区三叠系延长组长6—长9储层致密史与油藏成藏史研究[J]. 地质与资源, 2023, 32(3): 327-334. http://www.dzyzy.cn/article/doi/10.13686/j.cnki.dzyzy.2023.03.009

    Liu L, Zhang C, Sun M. Compacting and accumulation history of Chang 6-Chang 9 reservoirs from the Triassic Yanchang Formation in Zhidan Oilfield[J]. Geology and Resources, 2023, 32(3): 327-334. http://www.dzyzy.cn/article/doi/10.13686/j.cnki.dzyzy.2023.03.009

    [13]

    李彤. 多重分形原理及其若干应用[D]. 北京: 北京交通大学, 2007.

    Li T. Multifractal theory and some applications[D]. Beijing: Beijing Jiaotong University, 2007.

    [14]

    肯尼思·法尔科. 分形几何——数学基础及其应用[M]. 曾文曲, 刘世耀, 戴连贵, 等, 译. 沈阳: 东北大学出版社, 2001: 1-303.

    Falconer K J. Fractal geometry: Mathematical foundations and applications[M]. Zeng W Q, Liu S Y, Dai L G, et al, trans. Shenyang: Northeastern University Press, 2001: 1-303.

    [15]

    贺伟, 钟孚勋, 贺承祖, 等. 储层岩石孔隙的分形结构研究和应用[J]. 天然气工业, 2000, 20(2): 67-70.

    He W, Zhong F X, He C Z, et al. Fractal texture research on the pores in reservoir rocks and its application[J]. Natural Gas Industry, 2000, 20(2): 67-70.

    [16]

    黄金亮, 董大忠, 李建忠, 等. 陆相页岩储层孔隙分形特征——以四川盆地三叠系须家河组为例[J]. 天然气地球科学, 2016, 27(9): 1611-1618, 1708.

    Huang J L, Dong D Z, Li J Z, et al. Reservoir fractal characteristics of continental shale: An example from Triassic Xujiahe Formation shale, Sichuan Basin, China[J]. Natural Gas Geoscience, 2016, 27(9): 1611-1618, 1708.

    [17]

    陈燕燕, 邹才能, Mastalerz M, 等. 页岩微观孔隙演化及分形特征研究[J]. 天然气地球科学, 2015, 26(9): 1646-1656.

    Chen Y Y, Zou C N, Mastalerz M, et al. Porosity and fractal characteristics of shale across a maturation gradient[J]. Natural Gas Geoscience, 2015, 26(9): 1646-1656.

    [18]

    何琰, 吴念胜. 确定孔隙结构分形维数的新方法[J]. 石油实验地质, 1999, 21(4): 372-375, 301.

    He Y, Wu N S. A new method for determining fractal dimension of pore structure[J]. Experimental Petroleum Geology, 1999, 21(4): 372-375, 301.

    [19]

    冯小哲, 祝海华. 鄂尔多斯盆地苏里格地区下石盒子组致密砂岩储层微观孔隙结构及分形特征[J]. 地质科技情报, 2019, 38(3): 147-156.

    Feng X Z, Zhu H H. Micro-pore structure and fractal characteristics of the Xiashihezi formation tight sandstone reservoirs in Sulige area, Ordos Basin[J]. Geological Science and Technology Information, 2019, 38(3): 147-156.

    [20]

    王翀峘, 魏钦廉, 胡榕, 等. 不同物源体系致密储层微观结构特征及成因分析: 以陇东地区樊家川和南梁长6段为例[J]. 地质科技通报, 2023, 42(1): 286-298.

    Wang C H, Wei Q L, Hu R, et al. Microstructure characteristics and genetic analysis of tight reservoirs with different provenance systems: A case study of Fanjiachuan and Nanliang region of Chang 6 reservoir in Longdong area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 286-298.

    [21]

    单云鹏, 王红军, 张良杰, 等. 三角图的原理、快速绘制以及在砂岩分类中的应用[J]. 沉积学报, 2022, 40(4): 1095-1108.

    Shan Y P, Wang H J, Zhang L J, et al. The principle and fast drawing of ternary plots and their application in sandstone classification[J]. Acta Sedimentologica Sinica, 2022, 40(4): 1095-1108.

  • 加载中

(10)

(2)

计量
  • 文章访问数:  152
  • PDF下载数:  99
  • 施引文献:  0
出版历程
收稿日期:  2023-04-10
修回日期:  2023-08-26
刊出日期:  2024-10-25

目录