页岩纳米孔隙中滑脱效应及克努森扩散实验研究

孙艳玲, 高博, 佟智强, 王建伟, 谷马军, 王振, 刘启明. 页岩纳米孔隙中滑脱效应及克努森扩散实验研究[J]. 地质与资源, 2024, 33(5): 671-679. doi: 10.13686/j.cnki.dzyzy.2024.05.007
引用本文: 孙艳玲, 高博, 佟智强, 王建伟, 谷马军, 王振, 刘启明. 页岩纳米孔隙中滑脱效应及克努森扩散实验研究[J]. 地质与资源, 2024, 33(5): 671-679. doi: 10.13686/j.cnki.dzyzy.2024.05.007
SUN Yan-ling, GAO Bo, TONG Zhi-qiang, WANG Jian-wei, GU Ma-jun, WANG Zhen, LIU Qi-ming. EXPERIMENTAL STUDY OF SLIPPAGE EFFECTS AND KNUDSEN DIFFUSION IN SHALE NANOPORES[J]. Geology and Resources, 2024, 33(5): 671-679. doi: 10.13686/j.cnki.dzyzy.2024.05.007
Citation: SUN Yan-ling, GAO Bo, TONG Zhi-qiang, WANG Jian-wei, GU Ma-jun, WANG Zhen, LIU Qi-ming. EXPERIMENTAL STUDY OF SLIPPAGE EFFECTS AND KNUDSEN DIFFUSION IN SHALE NANOPORES[J]. Geology and Resources, 2024, 33(5): 671-679. doi: 10.13686/j.cnki.dzyzy.2024.05.007

页岩纳米孔隙中滑脱效应及克努森扩散实验研究

  • 基金项目:
    国家自然科学基金项目“连锁破坏性关键块体的确定方法”(41272387)
详细信息
    作者简介: 孙艳玲(1990-), 女, 硕士, 工程师, 主要从事水工环地质调查工作, 通信地址黑龙江省牡丹江市东安区卧龙街45号, E-mail//1049845147@qq.com
    通讯作者: 高博(1991-), 男, 工程师, 主要从事水文地质、工程地质、环境地质调查工作, 通信地址黑龙江省牡丹江市东安区卧龙街45号, E-mail//845916835@qq.com
  • 中图分类号: P618.13

EXPERIMENTAL STUDY OF SLIPPAGE EFFECTS AND KNUDSEN DIFFUSION IN SHALE NANOPORES

More Information
  • 页岩纳米孔隙中除达西流外, 滑脱效应及克努森扩散也是页岩气的主要流动方式. 查明其特征、变化趋势及影响因子对页岩气开采开发十分必要. 本研究选取柴达木盆地东部石炭系5块页岩样品, 测得TOC、Ro、孔径及矿物成分等物理化学性质. 根据达西原理设计实验, 结合质量通量模型和表观渗透率公式, 得到达西流、滑脱效应及克努森扩散的渗透率贡献值、分配系数及质量通量随压力变化的趋势, 分析物理化学性质影响. 结果表明: 滑脱效应的渗透率贡献值在压力较小时比例最大, 后逐渐变小, 质量通量变化不大; 克努森扩散所占比例小, 随着压力升高而下降; 达西流产生的渗透率贡献值不变, 所占比例及质量通量上升. TOC、Ro对真实地层中页岩气流动影响较大, 矿物含量及孔径对渗流有直接影响.

  • 加载中
  • 图 1  岩石渗透率实验装置图

    Figure 1. 

    图 2  渗透率实验结果

    Figure 2. 

    图 3  样品达西流、扩散流及滑脱流对表观渗透率贡献值

    Figure 3. 

    图 4  样品达西流、扩散流及滑脱流对表观渗透率的贡献分配系数

    Figure 4. 

    图 5  样品达西流、扩散流及滑脱流对质量通量贡献值

    Figure 5. 

    图 6  页岩物理化学性质对表观渗透率的影响

    Figure 6. 

    图 7  孔隙半径与表观渗透率关系

    Figure 7. 

    表 1  实验样品信息表

    Table 1.  Basic information of test samples

    样品号 S16 S23 S27 S39 S49
    深度/m 805.60 565.17 839 846.24 865.34
    孔隙度/% 2.19 1.89 4.79 4.20 2.99
    长度/cm 1.47 1.03 1.49 1.53 1.52
    半径/cm 1.25 1.25 1.25 1.25 1.25
    下载: 导出CSV

    表 2  实验计算结果表

    Table 2.  Test and calculation results of samples

    样品号 S16 S23 S27 S39 S49
    K/μm2 2.76E-09 5.05E-09 8.26E-09 1.12E-08 5.68E-09
    μDk/(μm2/MPa) 2.39E-10 8.58E-11 1.50E-10 1.61E-10 8.17E-11
    bk/MPa-1 8.81 4.17 7.55 16.54 8.98
    下载: 导出CSV

    表 3  页岩样品的物理化学性质

    Table 3.  Physical and chemical properties of shale samples

    样品号 S16 S23 S27 S39 S49
    TOC/% 1.04 0.93 0.18 1.13 0.46
    S/% 1.1 0.57 0.66 0.16 0.46
    镜质体反射率/Ro 1.44 2.03 1.97 1.46 1.89
    干酪根类型 Ⅱ2 Ⅱ2 Ⅱ2 Ⅱ1 Ⅱ2
    下载: 导出CSV

    表 4  页岩样品矿物成分测试结果

    Table 4.  Mineral compositions of shale samples

    样品号 S16 S23 S27 S39 S49
    石英 38 46 64 87 84
    白云石 2 < 1 < 1
    方解石 16 < 1 < 1
    菱铁矿 10 < 1 < 1
    斜长石 3
    黏土总量 31 51 36 11 15
    含量单位: %.
    下载: 导出CSV

    表 5  5 MPa下页岩表观渗透率及平均孔径

    Table 5.  Apparent permeability and average pore size of shale under the pressure of 5 MPa

    样品号 S16 S23 S27 S39 S49
    压汞法孔径总体积/μm3 2.93 15.74 0.256 0.058 0.05
    压汞法孔径大小/nm 12.32 3.56 4.77 6.3 3.58
    氮气吸附法孔径大小/nm 4.73 1.7 2.97 3.2 1.62
    孔径平均值/nm 8.525 2.63 3.87 4.75 2.6
    表观渗透率/μm2 7.68E-09 9.28E-09 2.08E-08 4.83E-08 1.59E-08
    下载: 导出CSV
  • [1]

    Javadpour F, Farshi M M, Amrein M. Atomic-force microscopy: A new tool for gas-shale characterization[J]. Journal of Canadian Petroleum Technology, 2012, 51(4): 236-243. doi: 10.2118/161015-PA

    [2]

    Beskok A, Karniadakis G E. Report: A model for flows in channels, pipes, and ducts at micro and nano scales[J]. Microscale Thermophysical Engineering, 1999, 3(1): 43-77. doi: 10.1080/108939599199864

    [3]

    Javadpour F, Fisher D, Unsworth M. Nanoscale gas flow in shale gas sediments[J]. Journal of Canadian Petroleum Technology, 2007, 46(10): 55-61.

    [4]

    Javadpour F. Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone)[J]. Journal of Canadian Petroleum Technology, 2009, 48(8): 16-21. doi: 10.2118/09-08-16-DA

    [5]

    杨泽皓, 宫厚健, 李亚军, 等. 页岩中气体流动规律数值模拟研究[J]. 中国科技论文, 2016, 11(5): 527-532. doi: 10.3969/j.issn.2095-2783.2016.05.011

    Yang Z H, Gong H J, Li Y J, et al. Numerical simulation study for gas transport in shale[J]. China Sciencepaper, 2016, 11(5): 527-532. doi: 10.3969/j.issn.2095-2783.2016.05.011

    [6]

    张欣, 刘吉余, 侯鹏飞. 中国页岩油的形成和分布理论综述[J]. 地质与资源, 2019, 28(2): 165-170. http://www.dzyzy.cn/article/id/8392

    Zhang X, Liu J Y, Hou P F. A review on the formation and distribution theories of the shale oil in China[J]. Geology and Resources, 2019, 28(2): 165-170. http://www.dzyzy.cn/article/id/8392

    [7]

    李军亮, 柳忠泉, 肖永军, 等. 柴达木盆地东部地区石炭系泥页岩生烃条件及选区[J]. 地质通报, 2016, 35(2/3): 312-320.

    Li J L, Liu Z Q, Xiao Y J, et al. Shale gas formation conditions and potential area selection in Carboniferous strata in eastern Qaidam Basin[J]. Geological Bulletin of China, 2016, 35(2/3): 312-320.

    [8]

    Yue X A, Wei H G, Zhang L J, et al. Low pressure gas percolation characteristic in ultra-low permeability porous media[J]. Transport in Porous Media, 2010, 85(1): 333-345. doi: 10.1007/s11242-010-9565-0

    [9]

    张晓. 致密气藏气体克努森扩散特征[J]. 非常规油气, 2019, 6(6): 80-82, 88.

    Zhang X. Characteristics of Knudsen diffusion in tight gas reservoirs[J]. Unconventional Oil &Gas, 2019, 6(6): 80-82, 88.

    [10]

    宋付权, 刘禹, 王常斌. 微纳米尺度下页岩气的质量流量特征分析[J]. 水动力学研究与进展, 2014, 29(2): 150-156.

    Song F Q, Liu Y, Wang C B. Analysis of the mass flow rate characteristics of the shale gas in micro/nano scale[J]. Chinese Journal of Hydrodynamics, 2014, 29(2): 150-156.

    [11]

    Deng J, Zhu W Y, Ma Q. A new seepage model for shale gas reservoir and productivity analysis of fractured well[J]. Fuel, 2014, 124: 232-240.

    [12]

    Klinkenberg L J. The permeability of porous media to liquids and gases[J]. API Drilling and Production Practice, 1941 (2): 200-213.

    [13]

    Brown G P, DiNardo A, Cheng G K, et al. The flow of gases in pipes at low pressures[J]. Journal of Applied Physics, 1946, 17(10): 802-813.

    [14]

    Roy S, Raju R, Chuang H F, et al. Modeling gas flow through microchannels and nanopores[J]. Journal of Applied Physics, 2003, 93(8): 4870-4879.

    [15]

    Wei M Q, Duan Y G, Fang Q T, et al. Mechanism model for shale gas transport considering diffusion, adsorption/desorption and Darcy flow[J]. Journal of Central South University, 2013, 20(7): 1928-1937.

    [16]

    徐德敏, 黄润秋, 邓英尔, 等. 低渗透软弱岩非达西渗流拟启动压力梯度试验研究[J]. 水文地质工程地质, 2008, 35(3): 57-60.

    Xu D M, Huang R Q, Deng Y E, et al. Non-Darcy flow quasi-threshold pressure gradient experimental study for low permeability soft rock[J]. Hydrogeology and Engineering Geology, 2008, 35(3): 57-60.

    [17]

    Civan F, Rai C S S, Sondergeld C H H. Determining shale permeability to gas by simultaneous analysis of various pressure tests[J]. SPE Journal, 2012, 17(3): 717-726.

    [18]

    唐德中, 王永堂, 黄志军. 测定气体压缩因子的Burnett方法[J]. 中国科学技术大学学报, 1986, 16(3): 295-301.

    Tang D Z, Wang Y T, Huang Z J. Determination of gas gompressibilities by the Buruett method[J]. Journal of China University of Science and Technology, 1986, 16(3): 295-301.

    [19]

    石蕾, 宗文明, 孙求实, 等. 泥页岩有机非均质性评价及其在烃源岩分级评价中的应用——以辽西拗陷中元古界蓟县系为例[J]. 地质与资源, 2022, 31(3): 367-374. http://www.dzyzy.cn/article/doi/10.13686/j.cnki.dzyzy.2022.03.012

    Shi L, Zong W M, Sun Q S, et al. Shale organic heterogeneity evaluation method and its application in source rocks grading evaluation: A case study of Mesoproterozoic Jixianianin in Liaoxi Depression[J]. Geology and Resources, 2022, 31(3): 367-374. http://www.dzyzy.cn/article/doi/10.13686/j.cnki.dzyzy.2022.03.012

    [20]

    Slatt R M, O'Brien N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030.

    [21]

    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 21650.1—2008压汞法和气体吸附法测定固体材料孔径分布和孔隙度第1部分: 压汞法[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 21650.1—2008 Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption-Part 1: Mercury porosimetry[S]. Beijing: Standards Press of China, 2008.

    [22]

    Wang F P, Reed R M, John A, et al. Pore networks and fluid flow in gas shales[C]//SPE Annual Technical Conference and Exhibition. New Orleans, USA: OnePetro, 2009.

    [23]

    Zhu W Y, Yue M, Ma D X, et al. The micro-structure and seepage characteristics of shale reservoir[J]. Journal of Chemical and Pharmaceutical Research, 2014, 6(1): 312-315.

  • 加载中

(7)

(5)

计量
  • 文章访问数:  181
  • PDF下载数:  252
  • 施引文献:  0
出版历程
收稿日期:  2023-02-08
修回日期:  2023-08-14
刊出日期:  2024-10-25

目录