-
摘要:
页岩纳米孔隙中除达西流外, 滑脱效应及克努森扩散也是页岩气的主要流动方式. 查明其特征、变化趋势及影响因子对页岩气开采开发十分必要. 本研究选取柴达木盆地东部石炭系5块页岩样品, 测得TOC、Ro、孔径及矿物成分等物理化学性质. 根据达西原理设计实验, 结合质量通量模型和表观渗透率公式, 得到达西流、滑脱效应及克努森扩散的渗透率贡献值、分配系数及质量通量随压力变化的趋势, 分析物理化学性质影响. 结果表明: 滑脱效应的渗透率贡献值在压力较小时比例最大, 后逐渐变小, 质量通量变化不大; 克努森扩散所占比例小, 随着压力升高而下降; 达西流产生的渗透率贡献值不变, 所占比例及质量通量上升. TOC、Ro对真实地层中页岩气流动影响较大, 矿物含量及孔径对渗流有直接影响.
Abstract:In addition to Darcy flow, slippage effect and Knudsen diffusion are also the main flow modes of shale gas in nanopores. It is necessary to find out their characteristics, changing trend and influencing factors for shale gas exploitation. In this study, five Carboniferous shale samples are collected from the eastern Qaidam Basin to test the physical and chemical properties such as TOC, Ro, pore size and mineral compositions. The experiment is designed on the basis of Darcy principle. Combined with mass flux model and apparent permeability formula, the permeability contribution values, distribution coefficients and the trend of mass flux with pressure of Darcy flow, slippage effect and Knudsen diffusion are obtained to analyze the effects of such physicochemical properties. The results show that the permeability contribution value of slippage effect is the largest when the pressure is small, and then gradually decreases, with a little change in mass flux. The proportion of Knudsen diffusion is small and decreases with the increase of pressure. The permeability contribution value of Darcy flow remains unchanged, while the proportion and mass flux increase. The TOC and Ro have great effect on shale gas flow in real formation, and mineral content and pore size have direct influence on seepage.
-
Key words:
- Darcy flow /
- slippage effect /
- Knudsen diffusion /
- mass flux /
- apparent permeability /
- shale gas
-
-
表 1 实验样品信息表
Table 1. Basic information of test samples
样品号 S16 S23 S27 S39 S49 深度/m 805.60 565.17 839 846.24 865.34 孔隙度/% 2.19 1.89 4.79 4.20 2.99 长度/cm 1.47 1.03 1.49 1.53 1.52 半径/cm 1.25 1.25 1.25 1.25 1.25 表 2 实验计算结果表
Table 2. Test and calculation results of samples
样品号 S16 S23 S27 S39 S49 K/μm2 2.76E-09 5.05E-09 8.26E-09 1.12E-08 5.68E-09 μDk/(μm2/MPa) 2.39E-10 8.58E-11 1.50E-10 1.61E-10 8.17E-11 bk/MPa-1 8.81 4.17 7.55 16.54 8.98 表 3 页岩样品的物理化学性质
Table 3. Physical and chemical properties of shale samples
样品号 S16 S23 S27 S39 S49 TOC/% 1.04 0.93 0.18 1.13 0.46 S/% 1.1 0.57 0.66 0.16 0.46 镜质体反射率/Ro 1.44 2.03 1.97 1.46 1.89 干酪根类型 Ⅱ2 Ⅱ2 Ⅱ2 Ⅱ1 Ⅱ2 表 4 页岩样品矿物成分测试结果
Table 4. Mineral compositions of shale samples
样品号 S16 S23 S27 S39 S49 石英 38 46 64 87 84 白云石 2 < 1 — < 1 — 方解石 16 < 1 — < 1 — 菱铁矿 10 < 1 — — < 1 斜长石 3 — — — — 黏土总量 31 51 36 11 15 含量单位: %. 表 5 5 MPa下页岩表观渗透率及平均孔径
Table 5. Apparent permeability and average pore size of shale under the pressure of 5 MPa
样品号 S16 S23 S27 S39 S49 压汞法孔径总体积/μm3 2.93 15.74 0.256 0.058 0.05 压汞法孔径大小/nm 12.32 3.56 4.77 6.3 3.58 氮气吸附法孔径大小/nm 4.73 1.7 2.97 3.2 1.62 孔径平均值/nm 8.525 2.63 3.87 4.75 2.6 表观渗透率/μm2 7.68E-09 9.28E-09 2.08E-08 4.83E-08 1.59E-08 -
[1] Javadpour F, Farshi M M, Amrein M. Atomic-force microscopy: A new tool for gas-shale characterization[J]. Journal of Canadian Petroleum Technology, 2012, 51(4): 236-243. doi: 10.2118/161015-PA
[2] Beskok A, Karniadakis G E. Report: A model for flows in channels, pipes, and ducts at micro and nano scales[J]. Microscale Thermophysical Engineering, 1999, 3(1): 43-77. doi: 10.1080/108939599199864
[3] Javadpour F, Fisher D, Unsworth M. Nanoscale gas flow in shale gas sediments[J]. Journal of Canadian Petroleum Technology, 2007, 46(10): 55-61.
[4] Javadpour F. Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone)[J]. Journal of Canadian Petroleum Technology, 2009, 48(8): 16-21. doi: 10.2118/09-08-16-DA
[5] 杨泽皓, 宫厚健, 李亚军, 等. 页岩中气体流动规律数值模拟研究[J]. 中国科技论文, 2016, 11(5): 527-532. doi: 10.3969/j.issn.2095-2783.2016.05.011
Yang Z H, Gong H J, Li Y J, et al. Numerical simulation study for gas transport in shale[J]. China Sciencepaper, 2016, 11(5): 527-532. doi: 10.3969/j.issn.2095-2783.2016.05.011
[6] 张欣, 刘吉余, 侯鹏飞. 中国页岩油的形成和分布理论综述[J]. 地质与资源, 2019, 28(2): 165-170. http://www.dzyzy.cn/article/id/8392
Zhang X, Liu J Y, Hou P F. A review on the formation and distribution theories of the shale oil in China[J]. Geology and Resources, 2019, 28(2): 165-170. http://www.dzyzy.cn/article/id/8392
[7] 李军亮, 柳忠泉, 肖永军, 等. 柴达木盆地东部地区石炭系泥页岩生烃条件及选区[J]. 地质通报, 2016, 35(2/3): 312-320.
Li J L, Liu Z Q, Xiao Y J, et al. Shale gas formation conditions and potential area selection in Carboniferous strata in eastern Qaidam Basin[J]. Geological Bulletin of China, 2016, 35(2/3): 312-320.
[8] Yue X A, Wei H G, Zhang L J, et al. Low pressure gas percolation characteristic in ultra-low permeability porous media[J]. Transport in Porous Media, 2010, 85(1): 333-345. doi: 10.1007/s11242-010-9565-0
[9] 张晓. 致密气藏气体克努森扩散特征[J]. 非常规油气, 2019, 6(6): 80-82, 88.
Zhang X. Characteristics of Knudsen diffusion in tight gas reservoirs[J]. Unconventional Oil &Gas, 2019, 6(6): 80-82, 88.
[10] 宋付权, 刘禹, 王常斌. 微纳米尺度下页岩气的质量流量特征分析[J]. 水动力学研究与进展, 2014, 29(2): 150-156.
Song F Q, Liu Y, Wang C B. Analysis of the mass flow rate characteristics of the shale gas in micro/nano scale[J]. Chinese Journal of Hydrodynamics, 2014, 29(2): 150-156.
[11] Deng J, Zhu W Y, Ma Q. A new seepage model for shale gas reservoir and productivity analysis of fractured well[J]. Fuel, 2014, 124: 232-240.
[12] Klinkenberg L J. The permeability of porous media to liquids and gases[J]. API Drilling and Production Practice, 1941 (2): 200-213.
[13] Brown G P, DiNardo A, Cheng G K, et al. The flow of gases in pipes at low pressures[J]. Journal of Applied Physics, 1946, 17(10): 802-813.
[14] Roy S, Raju R, Chuang H F, et al. Modeling gas flow through microchannels and nanopores[J]. Journal of Applied Physics, 2003, 93(8): 4870-4879.
[15] Wei M Q, Duan Y G, Fang Q T, et al. Mechanism model for shale gas transport considering diffusion, adsorption/desorption and Darcy flow[J]. Journal of Central South University, 2013, 20(7): 1928-1937.
[16] 徐德敏, 黄润秋, 邓英尔, 等. 低渗透软弱岩非达西渗流拟启动压力梯度试验研究[J]. 水文地质工程地质, 2008, 35(3): 57-60.
Xu D M, Huang R Q, Deng Y E, et al. Non-Darcy flow quasi-threshold pressure gradient experimental study for low permeability soft rock[J]. Hydrogeology and Engineering Geology, 2008, 35(3): 57-60.
[17] Civan F, Rai C S S, Sondergeld C H H. Determining shale permeability to gas by simultaneous analysis of various pressure tests[J]. SPE Journal, 2012, 17(3): 717-726.
[18] 唐德中, 王永堂, 黄志军. 测定气体压缩因子的Burnett方法[J]. 中国科学技术大学学报, 1986, 16(3): 295-301.
Tang D Z, Wang Y T, Huang Z J. Determination of gas gompressibilities by the Buruett method[J]. Journal of China University of Science and Technology, 1986, 16(3): 295-301.
[19] 石蕾, 宗文明, 孙求实, 等. 泥页岩有机非均质性评价及其在烃源岩分级评价中的应用——以辽西拗陷中元古界蓟县系为例[J]. 地质与资源, 2022, 31(3): 367-374. http://www.dzyzy.cn/article/doi/10.13686/j.cnki.dzyzy.2022.03.012
Shi L, Zong W M, Sun Q S, et al. Shale organic heterogeneity evaluation method and its application in source rocks grading evaluation: A case study of Mesoproterozoic Jixianianin in Liaoxi Depression[J]. Geology and Resources, 2022, 31(3): 367-374. http://www.dzyzy.cn/article/doi/10.13686/j.cnki.dzyzy.2022.03.012
[20] Slatt R M, O'Brien N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030.
[21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 21650.1—2008压汞法和气体吸附法测定固体材料孔径分布和孔隙度第1部分: 压汞法[S]. 北京: 中国标准出版社, 2008.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 21650.1—2008 Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption-Part 1: Mercury porosimetry[S]. Beijing: Standards Press of China, 2008.
[22] Wang F P, Reed R M, John A, et al. Pore networks and fluid flow in gas shales[C]//SPE Annual Technical Conference and Exhibition. New Orleans, USA: OnePetro, 2009.
[23] Zhu W Y, Yue M, Ma D X, et al. The micro-structure and seepage characteristics of shale reservoir[J]. Journal of Chemical and Pharmaceutical Research, 2014, 6(1): 312-315.
-