美国阿拉斯加长期陆域天然气水合物试采进展及对我国的启示

张炜, 邵明娟, 姚树青. 美国阿拉斯加长期陆域天然气水合物试采进展及对我国的启示[J]. 地质与资源, 2024, 33(5): 680-689. doi: 10.13686/j.cnki.dzyzy.2024.05.008
引用本文: 张炜, 邵明娟, 姚树青. 美国阿拉斯加长期陆域天然气水合物试采进展及对我国的启示[J]. 地质与资源, 2024, 33(5): 680-689. doi: 10.13686/j.cnki.dzyzy.2024.05.008
ZHANG Wei, SHAO Ming-juan, YAO Shu-qing. LONG-TERM ONSHORE PRODUCTION TEST OF NATURAL GAS HYDRATE IN ALASKA, US: Progress and enlightenment for China[J]. Geology and Resources, 2024, 33(5): 680-689. doi: 10.13686/j.cnki.dzyzy.2024.05.008
Citation: ZHANG Wei, SHAO Ming-juan, YAO Shu-qing. LONG-TERM ONSHORE PRODUCTION TEST OF NATURAL GAS HYDRATE IN ALASKA, US: Progress and enlightenment for China[J]. Geology and Resources, 2024, 33(5): 680-689. doi: 10.13686/j.cnki.dzyzy.2024.05.008

美国阿拉斯加长期陆域天然气水合物试采进展及对我国的启示

  • 基金项目:
    中国地质调查局项目“地球科学文献知识服务与决策支撑”(DD20230139);“清洁能源情报跟踪与研究”(DD20230602)
详细信息
    作者简介: 张炜(1981-), 男, 博士, 正高级工程师, 主要从事地质科技战略情报研究工作, 通信地址北京市海淀区学院路29号, E-mail//zhgwei@mail.cgs.gov.cn
  • 中图分类号: P618.13

LONG-TERM ONSHORE PRODUCTION TEST OF NATURAL GAS HYDRATE IN ALASKA, US: Progress and enlightenment for China

  • 随着天然气水合物勘查试采工作的不断深入, 世界主要国家以实现水合物产业化开发为目标的科学理论研究和技术装备研发面临发展瓶颈, 目前仅中国、日本、美国等几个国家仍在积极推进旨在突破上述发展瓶颈的长期水合物试采工作. 日美两国自2014年就阿拉斯加长期陆域试采项目达成合作意向以来, 基本完成了产气试验前的准备工作. 本文在梳理总结已开展的中短期水合物试采项目及长期试采必要性的基础上, 重点介绍了项目团队对试采场地的选择、地层测试井的钻探以及基于数据采集的目标储层表征, 认为我国在缺少可供长期陆域试采的合适区域的情况下, 可加强与俄罗斯在水合物勘查开发相关领域(尤其是长期陆域试采)的深入交流与合作. 尽管我国的水合物试采工作在产气时长、日最高产气量和累计产气量等方面处于领先, 但应针对钻井、完井、人工举升、地质力学、出砂、防砂等领域加强科学理论研究和关键技术攻关.

  • 加载中
  • 图 1  PTW-1和PTW-2生产井的井身结构示意图(据文献[19])

    Figure 1. 

    图 2  位于普拉德霍湾单元的Hydrate-01井与其他区域测试井的位置分布(据文献[17])

    Figure 2. 

    图 3  试采场地Kuparuk 7-11-12井垫的地层柱状图及伽马射线测井剖面(据文献[24])

    Figure 3. 

    图 4  过Kuparuk 7-11-12井和Hydrate-01井的砂岩层剖面图(据文献[24])

    Figure 4. 

    表 1  全球水合物试采情况对比

    Table 1.  Comparison of global hydrate production test projects

    国家 加拿大 美国 日本 中国
    试采次数 第一次陆域试采 第二次陆域试采 第三次陆域试采 第一次陆域试采 第二次陆域试采 第一次海域试采 第二次海域试采 第一次陆域试采 第二次陆域试采 第一次海域试采 第二次海域试采
    时间 2002年 2007年 2008年 2007年 2012年 2013年 2017年 2011年 2016年 2017年 2019—2020年
    作业区域 麦肯齐三角洲 麦肯齐三角洲 麦肯齐三角洲 阿拉斯加北坡 阿拉斯加北坡 第二渥美海丘 第二渥美海丘 祁连山木里地区 祁连山木里地区 南海神狐海域 南海神狐海域
    作业水深/m 约1000 约1000 1266 1310
    储层深度/m 地表以下约900 地表以下约1100 地表以下约1100 地表以下约700 海底以下约300 海底以下约350 地表以下146~305 地表以下340~350 海底以下203~277 海底以下171~196
    储层条件 砂质 砂质 砂质 砂质 砂质 砂质 砂质 粉砂质/砂质/泥质 粉砂质/砂质/泥质 泥质粉砂 泥质粉砂
    生产井名称 Mallik 5L-38 Mallik 2L-38 Mallik 2L-38 Mount Elbert 1 Igġnik Sikumi AT1-P AT1-P3 AT1-P2 SHSC-4 SHSC 2-6
    开采方法 热激法+降压法 降压法 降压法 降压法 二氧化碳-甲烷置换法+降压法 降压法 降压法 降压法 降压法+热激法 水平对接井+降压法 降压法 水平井+降压法
    人工举升类型 模块化动态地层测试器 电潜泵 电潜泵 模块化动态地层测试器 喷射泵 电潜泵 电潜泵 电潜泵 电潜泵→气举 电潜泵
    防砂 套管井独立筛管 砂筛 套管井独立筛管 砾石充填 带有形状记忆聚合物的GeoFORM筛管 带有形状记忆聚合物的GeoFORM筛管 带砾石充填的改进后预充填筛管 砾石充填采用超轻质陶粒辅助的创新性旁通预充填筛管
    增产措施 射孔 射孔 之前工作的影响 无,裸眼井 SMP活化液的影响 微水力压裂 压裂和表皮效应去除
    压降/MPa 约2.4 约3.5 约7.3 约4 约6.7 约9 约8 约5(稳定阶段)
    产气持续时间 125 h 12.5 h 6 d 6~12 h 30 d 6 d 12 d 24 d 101 h 23 d 60 d 30 d
    累计产气量/m3 516* 830 1.3×104 2.4×104 11.9×104 4.1×104 22.3×104 95 1078.4 30.9×104 86.1×104
    日均产气量/m3 94 1600 2200 800 2×104 3400 9270 22.62 46.89 5151 2.9×104
    日最高产气量/m3 350 2000 4000 5000 约2.5×104 约0.5×104 约1.5×104 136.55 3.5×104
    生产井中的测量 压力、温度(内置工具) 压力、温度(电潜泵测量) 压力、温度(点传感器) 压力、温度(内置工具) 压力、温度(DTS) 压力、温度(点传感器) 压力、温度(阵列) 压力、温度(阵列) 温度(点传感器和DTS) 压力和温度
    监测井中的测量 温度(DTS)、声学层析成像 温度(DTS和RTD阵列) 温度(DTS和RTD阵列)、压力(点传感器) 温度(DTS和RTD阵列)、压力(点传感器)
    停产原因 出砂 出砂 出砂 出砂 出砂 出砂 天气影响 电潜泵电源电缆故障
    注: *其中468 m3气体是试采过程中产出的, 48 m3气体是压井作业过程中产出的. "-"表示无可用数据.
    下载: 导出CSV
  • [1]

    Dallimore S R, Collett T S. Summary and implications of the Mallik 2002 gas hydrate production research well program[C] //Dallimore S R, Collet T S. Scientific results from the Mallik 2002 Gas Hydrate Production Well Program. Mackenzie Delta, Northwest Territories, Canada: Geological Survey of Canada Bulletin, 2005: 1-36.

    [2]

    Wang Z Y, Zhang Y Y, Peng Z Y, et al. Recent advances in methods of gas recovery from hydrate-bearing sediments: A review[J]. Energy & Fuels, 2022, 36(11): 5550-5593.

    [3]

    张炜, 邵明娟, 姜重昕, 等. 世界天然气水合物钻探历程与试采进展[J]. 海洋地质与第四纪地质, 2018, 38(5): 1-13.

    Zhang W, Shao M J, Jiang C X, et al. World progress of drilling and production test of natural gas hydrate[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 1-13.

    [4]

    Sahu C, Kumar R, Sangwai J S. A comprehensive review on well completion operations and artificial lift techniques for methane gas production from natural gas hydrate reservoirs[J]. Energy & Fuels, 2021, 35(15): 11740-11760.

    [5]

    Yamamoto K, Boswell R, Collett T S, et al. Review of past gas production attempts from subsurface gas hydrate deposits and necessity of long-term production testing[J]. Energy & Fuels, 2022, 36(10): 5047-5062.

    [6]

    Ouchi H, Yamamoto K, Akamine K, et al. Numerical history-matching of modeling and actual gas production behavior and causes of the discrepancy of the Nankai Trough gas-hydrate production test cases[J]. Energy & Fuels, 2022, 36(1): 210-226.

    [7]

    Yamamoto K, Kanno T, Wang X X, et al. Thermal responses of a gas hydrate-bearing sediment to a depressurization operation[J]. RSC Advances, 2017, 7(10): 5554-5577. doi: 10.1039/C6RA26487E

    [8]

    Yamamoto K, Kanno T, Ouchi H, et al. Comparison of the vertical gas-hydrate production profile with the simulation results obtained using geophysical log-based reservoir characteristics and reasons for their discrepancies in the Nankai Trough[J]. Energy & Fuels, 2021, 35(24): 20026-20036.

    [9]

    MH21-S研究开发コンソ一シアム. 地下で何が起こっていたのか? 计测とモデルの组み合わせから见えること[EB/OL]. (2020-12-16) [2023-06-05]. https://www.mh21japan.gr.jp/pdf/mh21form2020/doc02.pdf. (in Japanese)

    [10]

    MH21-S研究开发コンソ一シアム. アラスカ陆上产出试验では何をするのか?[EB/OL]. (2022-12-07)[2023-06-05]. https://www.mh21japan.gr.jp/pdf/mh21form2022/doc03.pdf?d=20211221. (in Japanese)

    [11]

    Boswell R, Collett T S, Yamamoto K, et al. Scientific results of the Hydrate-01 stratigraphic test well program, western Prudhoe Bay unit, Alaska North Slope[J]. Energy & Fuels, 2022, 36(10): 5167-5184.

    [12]

    Collett T S, Boswell R, Lee M W, et al. Evaluation of long-term gas-hydrate-production testing locations on the Alaska North Slope[J]. SPE Reservoir Evaluation & Engineering, 2012, 15(2): 243-264.

    [13]

    Collett T S, Lewis K A, Zyrianova M V, et al. Assessment of undiscovered gas hydrate resources in the North Slope of Alaska, 2018[R]. Reston: U.S. Geological Survey, 2019: 1-4.

    [14]

    Boswell R, Schoderbek D, Collett T S, et al. The Iġnik Sikumi field experiment, Alaska North Slope: Design, operations, and implications for CO2-CH4 exchange in gas hydrate reservoirs[J]. Energy & Fuels, 2017, 31(1): 140-153.

    [15]

    Okinaka N, Boswell R, Collett T S, et al. Progress toward the establishment of an extended-duration gas hydrate reservoir response test on the Alaska North Slope[C] //Proceedings of the 10th International Conference on Gas Hydrates (ICGH10). Singapore, 2020.

    [16]

    Collett T S, Zyrianova M V, Okinaka N, et al. Planning and operations of the Hydrate 01 stratigraphic test well, Prudhoe Bay unit, Alaska North Slope[J]. Energy & Fuels, 2022, 36(6): 3016-3039.

    [17]

    Young C, Shragge J, Schultz W, et al. Advanced distributed acoustic sensing vertical seismic profile imaging of an Alaska North Slope gas hydrate field[J]. Energy & Fuels, 2022, 36(7): 3481-3495.

    [18]

    U.S. Department of Energy. U.S. Department of Energy and partners to test gas hydrates reservoir response on Alaska North Slope[EB/OL]. (2022-08-30)[2023-06-05]. https://www.energy.gov/fecm/articles/us-department-energy-and-partners-test-gas-hydrates-reservoir-response-alaska-north.

    [19]

    独立行政法人エネルギ一·金属矿物资源机构. 令和3年度石油天然ガス开发技术本部年报[EB/OL]. [2023-06-05]. https://www.jogmec.go.jp/content/300386150.pdf. (in Japanese)

    [20]

    Hunter R B, Collett T S, Boswell R, et al. Mount Elbert gas hydrate stratigraphic test well, Alaska North Slope: Overview of scientific and technical program[J]. Marine and Petroleum Geology, 2011, 28(2): 295-310. doi: 10.1016/j.marpetgeo.2010.02.015

    [21]

    Farrell H, Boswell R, Howard J, et al. CO2-CH4 exchange in natural gas hydrate reservoirs: Potential and challenges[J]. Fire-In-The-Ice, 2010, 10(1): 19-21.

    [22]

    Haines S S, Collett T S, Yoneda J, et al. Gas hydrate saturation estimates, gas hydrate occurrence, and reservoir characteristics based on well log data from the Hydrate-01 stratigraphic test well, Alaska North Slope[J]. Energy & Fuels, 2022, 36(6): 3040-3050.

    [23]

    Yoneda J, Jin Y, Muraoka M, et al. Multiple physical properties of gas hydrate-bearing sediments recovered from Alaska North Slope 2018 Hydrate-01 stratigraphic test well[J]. Marine and Petroleum Geology, 2021, 123: 104748. doi: 10.1016/j.marpetgeo.2020.104748

    [24]

    Tamaki M, Fujimoto A, Boswell R, et al. Geological reservoir characterization of a gas hydrate prospect associated with the Hydrate-01 stratigraphic test well, Alaska North Slope[J]. Energy & Fuels, 2022, 36(15): 8128-8149.

    [25]

    Collett T S, Lee M W, Agena W F, et al. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope[J]. Marine and Petroleum Geology, 2011, 28(2): 279-294.

    [26]

    Collett T S. Natural gas hydrates of the Prudhoe Bay and Kuparuk River area, North Slope, Alaska[J]. AAPG Bulletin, 1993, 77(5): 793-812.

    [27]

    Collett T S. Energy resource potential of natural gas hydrates[J]. AAPG Bulletin, 2002, 86(11): 1971-1992.

    [28]

    Boswell R, Rose K, Collett T S, et al. Geologic controls on gas hydrate occurrence in the Mount Elbert prospect, Alaska North Slope [J]. Marine and Petroleum Geology, 2011, 28(2): 589-607.

    [29]

    Lewis K A, Collett T S. Brookian sequence well log correlation sections and occurrence of gas hydrates, north-central North Slope, Alaska[R]. Reston: U.S. Geological Survey, 2013: 1-23.

    [30]

    Myshakin E, Garapati N, Seol Y, et al. Numerical simulations of depressurization-induced gas hydrate reservoir (B1 Sand) response at the Prudhoe Bay unit Kuparuk 7-11-12 pad on the Alaska North Slope[J]. Energy & Fuels, 2022, 36(5): 2542-2560.

    [31]

    Yoneda J, Suzuki K, Jin Y, et al. Permeability measurement and prediction with nuclear magnetic resonance analysis of gas hydrate-bearing sediments recovered from Alaska North Slope 2018 Hydrate-01 stratigraphic test well[J]. Energy & Fuels, 2022, 36(5): 2515-2529.

    [32]

    Konno Y, Yoneda J, Egawa K, et al. Permeability of sediment cores from methane hydrate deposit in the eastern Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66: 487-495.

    [33]

    Larsen P H. Relay structures in a Lower Permian basement-involved extension system, East Greenland[J]. Journal of Structural Geology, 1988, 10(1): 3-8.

    [34]

    Peacock D C P, Parfitt E A. Active relay ramps and normal fault propagation on Kilauea Volcano, Hawaii[J]. Journal of Structural Geology, 2002, 24(4): 729-742.

    [35]

    Fossen H, Rotevatn A. Fault linkage and relay structures in extensional settings: A review[J]. Earth-Science Reviews, 2016, 154: 14-28.

    [36]

    Kuuskraa V A. А decade of progress in unconventional gas[J]. OJG Unconventional Gas Article, 2007, 1: 1-10.

    [37]

    Перлова Е В. Коммерчески значимые нетрадиционные источники газа-мировой опыт освоения и перспективы для России[J]. Территория Нефтегаз, 2010, 11: 46-51. (in Russian)

    [38]

    Перлова Е В, Леонов С А, Хабибуллин Д Я. Приоритетные направления освоения газогидратных залежей России[J]. Вести Газовой Науки, 2017, 3(31): 224-229. (in Russian)

    [39]

    Медведева О Е, Макар С В. Перспективность освоения нетрадиционных ресурсов газа в мире и россии[J]. Научный Вестник ЮИМ, 2018, 1: 49-51. (in Russian)

    [40]

    邵明娟, 张炜, 吴西顺, 等. 麦索亚哈气田天然气水合物的开发[J]. 国土资源情报, 2016(12): 17-19, 31.

    Shao M J, Zhang W, Wu X S, et al. Natural gas hydrate exploitation at Messoyakha gas field[J]. Land and Resources Information, 2016(12): 17-19, 31.

    [41]

    Li J F, Ye J L, Qin X W, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5-16.

    [42]

    Ye J L, Qin X W, Xie W W, et al. The second natural gas hydrate production test in the South China Sea[J]. China Geology, 2020, 3(2): 197-209.

    [43]

    Sahu C, Kumar R, Sangwai J S. Comprehensive review on exploration and drilling techniques for natural gas hydrate reservoirs[J]. Energy & Fuels, 2020, 34(10): 11813-11839.

    [44]

    朱慧星. 天然气水合物开采储层出砂过程及对产气影响的数值模型研究[D]. 长春: 吉林大学, 2021.

    Zhu H X. Numerical study on sand production processes during natural gas hydrate recovery and its impact on gas production[D]. Changchun: Jilin University, 2021.

    [45]

    李彦龙. 南海目标区块天然气水合物开发井控砂介质堵塞模拟与控砂参数优化研究[D]. 武汉: 中国地质大学(武汉), 2021.

    Li Y L. Study on clogging of sand-control media and sand-control optimization for natural gas hydrate production wells in the South China Sea[D]. Wuhan: China University of Geosciences, 2021.

    [46]

    宁伏龙, 方翔宇, 李彦龙, 等. 天然气水合物开采储层出砂研究进展与思考[J]. 地质科技通报, 2020, 39(1): 137-148.

    Ning F L, Fang X Y, Li Y L, et al. Research status and perspective on wellbore sand production from hydrate reservoirs[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 137-148.

  • 加载中

(4)

(1)

计量
  • 文章访问数:  177
  • PDF下载数:  192
  • 施引文献:  0
出版历程
收稿日期:  2023-04-04
修回日期:  2023-06-09
刊出日期:  2024-10-25

目录