太子河冲洪积扇地下水水化学特征及成因分析

许波, 田野, 王末, 唐文泰, 赵男, 刘创创, 隋克林, 霍伟奇. 太子河冲洪积扇地下水水化学特征及成因分析[J]. 地质与资源, 2024, 33(5): 690-700. doi: 10.13686/j.cnki.dzyzy.2024.05.009
引用本文: 许波, 田野, 王末, 唐文泰, 赵男, 刘创创, 隋克林, 霍伟奇. 太子河冲洪积扇地下水水化学特征及成因分析[J]. 地质与资源, 2024, 33(5): 690-700. doi: 10.13686/j.cnki.dzyzy.2024.05.009
XU Bo, TIAN Ye, WANG Mo, TANG Wen-tai, ZHAO Nan, LIU Chuang-chuang, SUI Ke-lin, HUO Wei-qi. HYDROCHEMISTRY AND GENESIS OF GROUNDWATER IN THE ALLUVIAL-PROLUVIAL FAN OF TAIZI RIVER[J]. Geology and Resources, 2024, 33(5): 690-700. doi: 10.13686/j.cnki.dzyzy.2024.05.009
Citation: XU Bo, TIAN Ye, WANG Mo, TANG Wen-tai, ZHAO Nan, LIU Chuang-chuang, SUI Ke-lin, HUO Wei-qi. HYDROCHEMISTRY AND GENESIS OF GROUNDWATER IN THE ALLUVIAL-PROLUVIAL FAN OF TAIZI RIVER[J]. Geology and Resources, 2024, 33(5): 690-700. doi: 10.13686/j.cnki.dzyzy.2024.05.009

太子河冲洪积扇地下水水化学特征及成因分析

  • 基金项目:
    中国地质调查局项目“东部平原湖区北部湖泊调查”(DDR0230505)
详细信息
    作者简介: 许波(1993-), 男, 工程师, 主要从事水文地质工程地质研究工作, 通信地质河北省廊坊市广阳区广阳道93号, E-mail//2516459149@qq.com
    通讯作者: 田野(1988-), 男, 硕士, 工程师, 主要从事城市地质、矿产勘查研究工作, 通信地址河北省廊坊市广阳区广阳道93号, E-mail//tianye@mail.cgs.gov.cn
  • 中图分类号: P641.3

HYDROCHEMISTRY AND GENESIS OF GROUNDWATER IN THE ALLUVIAL-PROLUVIAL FAN OF TAIZI RIVER

More Information
  • 结合研究区已有的基础地质、水文地质资料, 基于水化学数据, 运用数理统计、舒卡列夫分类、Piper三线图、Schoeller图、Gibbs图、离子比值等方法, 分析冲洪积扇不同区域地下水水化学特征, 讨论不同区域地下水演化的主要控制因素, 研究地下水水环境污染状况. 结果表明: 太子河冲洪积扇地下水受人类活动影响较弱, 扇顶地下水水化学类型主要为HCO3·SO4-Ca型和HCO3·SO4·Cl-Ca型, 扇中地下水水化学类型主要为HCO3-Ca型和HCO3·SO4-Ca型, 扇缘地下水水化学类型主要为HCO3-Ca型. 太子河冲洪积扇不同部位地下水演化受到的岩石风化作用和离子交换作用影响的强度和方式不同. 太子河冲洪积扇地下水中"三氮"污染问题主要受采矿、冶金、化工等工矿活动和农业活动的影响, 空间分布特征与人类活动密切相关. 对太子河冲洪积扇地下水水化学类型和特征、水化学成因以及"三氮"污染现状的分析和研究, 可为下一步地下水源地开发利用和可持续发展提供科学依据.

  • 加载中
  • 图 1  太子河冲洪积扇地下水采样点分布图

    Figure 1. 

    图 2  太子河冲洪积扇地下水主要离子Schoeller图

    Figure 2. 

    图 3  太子河冲洪积扇地下水水化学类型分布图

    Figure 3. 

    图 4  太子河冲洪积扇地下水Piper三线图

    Figure 4. 

    图 5  太子河冲洪积扇地下水Gibbs图

    Figure 5. 

    图 6  太子河冲洪积扇地下水Ca2+、Mg2+、Na+、HCO3-摩尔浓度比值

    Figure 6. 

    图 7  太子河冲洪积扇地下水中Na+/Cl-与Cl-的关系

    Figure 7. 

    图 8  太子河冲洪积扇地下水中Ca2++Mg2+与HCO3-的关系

    Figure 8. 

    图 9  太子河冲洪积扇地下水中(Ca2++Mg2+)/HCO3-与SO42-/HCO3-的关系

    Figure 9. 

    图 10  太子河冲洪积扇地下水中Ca2++Mg2+与HCO3-+SO42-的关系

    Figure 10. 

    图 11  太子河冲洪积扇地下水中Ca2++Mg2+-HCO3--SO42-与Na+-Cl-的关系

    Figure 11. 

    图 12  太子河冲洪积扇地下水中Ca2++Mg2++Na+与HCO3-+SO42-+Cl-的关系

    Figure 12. 

    图 13  太子河冲洪积扇地下水硝酸盐氮浓度分布图

    Figure 13. 

    图 14  太子河冲洪积扇地下水亚硝酸盐氮浓度分布图

    Figure 14. 

    图 15  太子河冲洪积扇地下水氨氮浓度分布图

    Figure 15. 

    表 1  主要离子质量浓度统计

    Table 1.  Mass concentration statistics of major ions

    采样位置 样本数/个 项目 K+ Na+ Ca2+ Mg2+ SO42- HCO3- Cl- TDS
    扇顶 20 均值 7.54 50.61 111.26 29.94 144.45 192.09 72.22 713.87
    中值 3.28 41.53 111.05 27.12 109.53 179.10 66.97 690.88
    标准差 11.63 33.76 53.43 17.99 108.23 84.90 50.91 304.27
    最小值 0.49 8.18 30.79 7.24 32.59 72.77 13.31 294.89
    最大值 49.42 122.20 249.00 77.11 429.60 417.79 228.80 1496.22
    扇中 59 均值 2.91 27.83 89.10 18.62 82.62 199.90 43.49 431.04
    中值 1.55 23.66 79.31 16.21 66.85 207.10 38.97 383.73
    标准差 6.49 17.06 50.05 10.98 80.53 70.62 37.91 202.00
    最小值 0.13 7.77 29.92 5.70 1.72 60.07 2.36 157.36
    最大值 50.83 76.39 251.40 58.09 384.76 393.21 210.03 1186.40
    扇缘 48 均值 1.40 28.80 88.33 16.70 50.56 238.32 48.43 401.43
    中值 0.91 22.88 72.51 14.43 14.05 229.44 23.39 354.15
    标准差 2.75 14.04 46.65 8.90 62.83 77.56 51.47 184.25
    最小值 0.13 10.50 24.00 3.95 0.02 76.46 3.75 156.08
    最大值 19.69 68.00 215.00 48.97 241.44 440.60 214.44 968.00
    含量单位: mg/L.
    下载: 导出CSV
  • [1]

    王明君, 梁秀娟, 肖长来. 双辽市地下水化学特征及成因分析[J]. 水利水电技术, 2019, 50(3): 124-131.

    Wang M J, Liang X J, Xiao C L. Analysis on chemical characteristics and genesis of groundwater in Shuangliao City[J]. Water Resources and Hydropower Engineering, 2019, 50(3): 124-131.

    [2]

    赵振, 陈惠娟, 段隆臣. 巴音河冲洪积扇前缘地下水位上升灾害特征及影响因素[J]. 水资源保护, 2023, 39(3): 142-147, 169.

    Zhao Z, Chen H J, Duan L C. Disaster characteristics and influencing factors of groundwater level rise in front edge of the Bayin River alluvial fan[J]. Water Resources Protection, 2023, 39(3): 142-147, 169.

    [3]

    段磊, 王文科, 曹玉清, 等. 天山北麓中段地下水水化学特征及其形成作用[J]. 干旱区资源与环境, 2007, 21(9): 29-34.

    Duan L, Wang W K, Cao Y Q, et al. Hydrochemical characteristics and formation mechanics of groundwater in the middle of northern slope of Tianshan Mountains[J]. Journal of Arid Land Resources and Environment, 2007, 21(9): 29-34.

    [4]

    Reddy A G S, Kumar K N. Identification of the hydrogeochemical processes in groundwater using major ion chemistry: A case study of Penna-Chitravathi river basins in Southern India[J]. Environmental Monitoring and Assessment, 2010, 170(1/4): 365-382.

    [5]

    张人权, 梁杏, 靳孟贵, 等. 当代水文地质学发展趋势与对策[J]. 水文地质工程地质, 2005, 32(1): 51-56.

    Zhang R Q, Liang X, Jin M G, et al. The trends in contemporary hydrogeology[J]. Hydrogeology & Engineering Geology, 2005, 32(1): 51-56.

    [6]

    Selvam S, Manimaran G, Sivasubramanian P, et al. GIS-based evaluation of water quality index of groundwater resources around Tuticorin coastal city, south India[J]. Environmental Earth Sciences, 2014, 71(6): 2847-2867. doi: 10.1007/s12665-013-2662-y

    [7]

    Zhao X B, Guo H P, Wang Y L, et al. Groundwater hydrogeochemical characteristics and quality suitability assessment for irrigation and drinking purposes in an agricultural region of the North China Plain [J]. Environmental Earth Sciences, 2021, 80(4): 162. doi: 10.1007/s12665-021-09432-w

    [8]

    薛超. 辽宁省辽阳市水资源承载力评价[J]. 黑龙江水利科技, 2020, 48(1): 25-28.

    Xue C. Evaluation of water resources carrying capability of Liaoyang City in Liaoning Province[J]. Heilongjiang Hydraulic Science and Technology, 2020, 48(1): 25-28.

    [9]

    孙才志, 胡冬玲, 杨磊. 下辽河平原地下水系统恢复力研究[J]. 水利水电科技进展, 2011, 31(5): 5-10.

    Sun C Z, Hu D L, Yang L. Recovery capacity of groundwater system in Lower Liaohe River Plain[J]. Advances in Science and Technology of Water Resources, 2011, 31(5): 5-10.

    [10]

    张国. 辽阳市环境空气预警预报系统建设[J]. 科技展望, 2017, 27(9): 312.

    Zhang G. Construction of environmental air early warning and forecast system of Liaoyang City[J]. Technology Outlook, 2017, 27(9): 312. (in Chinese)

    [11]

    丁妍, 李玉山, 康荣秋. 太子河冲积扇富水特征和富水地段分布规律[J]. 黑龙江水利科技, 2011, 39(3): 15-17.

    Ding Y, Li Y S, Kang R Q. Water-rich characteristics of alluvial fan of Taizi River and its distribution regularity in water-rich areas[J]. Heilongjiang Science and Technology of Water Conservancy, 2011, 39(3): 15-17. (in Chinese)

    [12]

    杨劲松, 姜高磊, 赵华, 等. 内蒙古大青山山前第四纪冲洪积扇填图实践与思考[J]. 地质通报, 2022, 41(2/3): 262-270.

    Yang J S, Jiang G L, Zhao H, et al. Geological mapping practice and exploration of Quaternary alluvial-pluvial fans along the Daqing Mountain, Inner Mongolia[J]. Geological Bulletin of China, 2022, 41(2/3): 262-270.

    [13]

    姜体胜, 曲辞晓, 王明玉, 等. 北京平谷平原区浅层地下水化学特征及成因分析[J]. 干旱区资源与环境, 2017, 31(11): 122-127.

    Jiang T S, Qu C X, Wang M Y, et al. Hydrochemical characteristics of shallow groundwater and the origin in the Pinggu Plain, Beijing[J]. Journal of Arid Land Resources and Environment, 2017, 31(11): 122-127.

    [14]

    El Maghraby M M S. Hydrogeochemical characterization of groundwater aquifer in Al-Madinah Al-Munawarah City, Saudi Arabia[J]. Arabian Journal of Geosciences, 2015, 8(6): 4191-4206. doi: 10.1007/s12517-014-1505-9

    [15]

    Sarikhani R, Ghassemi Dehnavi A, Ahmadnejad Z, et al. Hydrochemical characteristics and groundwater quality assessment in Bushehr Province, SW Iran[J]. Environmental Earth Sciences, 2015, 74(7): 6265-6281. doi: 10.1007/s12665-015-4651-9

    [16]

    黄奇波, 覃小群, 刘朋雨, 等. 乌江中上游段河水主要离子化学特征及控制因素[J]. 环境科学, 2016, 37(5): 1779-1787.

    Huang Q B, Qin X Q, Liu P Y, et al. Major ionic features and their controlling factors in the upper-middle reaches of Wujiang River[J]. Environmental Science, 2016, 37(5): 1779-1787.

    [17]

    孙平安, 于奭, 莫付珍, 等. 不同地质背景下河流水化学特征及影响因素研究: 以广西大溶江、灵渠流域为例[J]. 环境科学, 2016, 37(1): 123-131.

    Sun P A, Yu S, Mo F Z, et al. Hydrochemical characteristics and influencing factors in different geological background: A case study in Darongjiang and Lingqu Basin, Guangxi, China[J]. Environmental Science, 2016, 37(1): 123-131.

    [18]

    韦虹, 吴锦奎, 沈永平, 等. 额尔齐斯河源区融雪期积雪与河流的水化学特征[J]. 环境科学, 2016, 37(4): 1345-1352.

    Wei H, Wu J K, Shen Y P, et al. Hydrochemical characteristics of snow meltwater and river water during snow-melting period in the headwaters of the Ertis River, Xinjiang[J]. Environmental Science, 2016, 37(4): 1345-1352.

    [19]

    赵江涛, 周金龙, 梁川, 等. 新疆焉耆盆地平原区地下水演化的主要水文地球化学过程分析[J]. 环境化学, 2017, 36(6): 1397-1406.

    Zhao J T, Zhou J L, Liang C, et al. Hydrogeochemical process of evolution of groundwater in plain area of Yanqi, Xinjiang[J]. Environmental Chemistry, 2017, 36(6): 1397-1406.

    [20]

    唐金平, 张强, 胡漾, 等. 湔江冲洪积扇地下水化学特征及控制因素分析[J]. 环境科学, 2019, 40(7): 3089-3098.

    Tang J P, Zhang Q, Hu Y, et al. Groundwater chemical characteristics and analysis of their controlling factors in an alluvial fan of Jianjiang River[J]. Environmental Science, 2019, 40(7): 3089-3098.

    [21]

    张英, 刘春燕, 王金翠, 等. 快速城镇化进程中典型冲洪积扇地下水化学演变特征及影响因素解析[J]. 南水北调与水利科技, 2019, 17(5): 172-179, 193.

    Zhang Y, Liu C Y, Wang J C, et al. Analysis of characteristics and influencing factors of groundwater chemical evolution of typical alluvial fans of rapid urbanization[J]. South-to-North Water Transfers and Water Science & Technology, 2019, 17(5): 172-179, 193.

    [22]

    Marandi A, Shand P. Groundwater chemistry and the Gibbs diagram [J]. Applied Geochemistry, 2018, 97: 209-212. doi: 10.1016/j.apgeochem.2018.07.009

    [23]

    Xing L N, Guo H M, Zhan Y H. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain[J]. Journal of Asian Earth Sciences, 2013, 70-71: 250-264. doi: 10.1016/j.jseaes.2013.03.017

    [24]

    Zhu B Q, Yang X P, Rioual P, et al. Hydrogeochemistry of three watersheds (the Erlqis, Zhungarer and Yili) in northern Xinjiang, NW China[J]. Applied Geochemistry, 2011, 26(8): 1535-1548. doi: 10.1016/j.apgeochem.2011.06.018

    [25]

    马燕华, 苏春利, 刘伟江, 等. 水化学和环境同位素在示踪枣庄市南部地下水硫酸盐污染源中的应用[J]. 环境科学, 2016, 37(12): 4690-4699.

    Ma Y H, Su C L, Liu W J, et al. Identification of sulfate sources in the groundwater system of Zaozhuang: Evidences from isotopic and hydrochemical characteristics[J]. Environmental Science, 2016, 37(12): 4690-4699.

    [26]

    Gaillardet J, Dupré B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers [J]. Chemical Geology, 1999, 159(1/4): 3-30.

    [27]

    吕婕梅, 安艳玲, 吴起鑫, 等. 清水江流域岩石风化特征及其碳汇效应[J]. 环境科学, 2016, 37(12): 4671-4679.

    Lü J M, An Y L, Wu Q X, et al. Rock weathering characteristics and the atmospheric carbon sink in the chemical weathering processes of Qingshuijiang River Basin[J]. Environmental Science, 2016, 37(12): 4671-4679.

    [28]

    杜文越, 何若雪, 何师意, 等. 桂江上游水化学特征变化及离子来源分析——以桂林断面为例[J]. 中国岩溶, 2017, 36(2): 207-214.

    Du W Y, He R X, He S Y, et al. Variation of hydrochemical characteristics and the ion source in the upstream of Guijiang River: A case study in Guilin section[J]. Carsologica Sinica, 2017, 36(2): 207-214.

    [29]

    张涛, 蔡五田, 李颖智, 等. 尼洋河流域水化学特征及其控制因素[J]. 环境科学, 2017, 38(11): 4537-4545.

    Zhang T, Cai W T, Li Y Z, et al. Major ionic features and their possible controls in the water of the Niyang River Basin[J]. Environmental Science, 2017, 38(11): 4537-4545.

    [30]

    刘江涛, 蔡五田, 曹月婷, 等. 沁河冲洪积扇地下水水化学特征及成因分析[J]. 环境科学, 2018, 39(12): 5428-5439.

    Liu J T, Cai W T, Cao Y T, et al. Hydrochemical characteristics of groundwater and the origin in alluvial-proluvial fan of Qinhe River[J]. Environmental Science, 2018, 39(12): 5428-5439.

    [31]

    Karim A, Veizer J. Weathering processes in the Indus River Basin: Implications from riverine carbon, sulfur, oxygen, and strontium isotopes[J]. Chemical Geology, 2000, 170(1/4): 153-177.

    [32]

    何朝鑫, 陈翠华, 李佑国, 等. 青海省都兰县双庆铁矿床金属硫化物地球化学特征及其指示意义[J]. 地球化学, 2015, 44(4): 392-401.

    He C X, Chen C H, Li Y G, et al. Metal sulfides of the Shuangqing iron deposit in Dulan, Qinghai Province: Geochemical characteristics and implications[J]. Geochimica, 2015, 44(4): 392-401.

    [33]

    刘丛强, 蒋颖魁, 陶发祥, 等. 西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J]. 地球化学, 2008, 37(4): 404-414.

    Liu C Q, Jiang Y K, Tao F X, et al. Chemical weathering of carbonate rocks by sulfuric acid and the carbon cycling in Southwest China[J]. Geochimica, 2008, 37(4): 404-414.

    [34]

    马秀平, 井维鑫, 王茜, 等. 丹河水系表层沉积物重金属污染及生态风险评价[J]. 农业环境科学学报, 2010, 29(6): 1180-1186.

    Ma X P, Jing W X, Wang Q, et al. Heavy metal pollution in the surface sediment of Dan River and its ecological risk assessment[J]. Journal of Agro-Environment Science, 2010, 29(6): 1180-1186.

    [35]

    吕晓立, 刘景涛, 周冰, 等. 塔城盆地地下水氟分布特征及富集机理[J]. 地学前缘, 2021, 28(2): 426-436.

    Lü X L, Liu J T, Zhou B, et al. Distribution characteristics and enrichment mechanism of fluoride in the shallow aquifer of the Tacheng Basin[J]. Earth Science Frontiers, 2021, 28(2): 426-436.

    [36]

    葛婷婷, 周金龙, 曾妍妍. 新疆克里雅河流域平原区地下水"三氮" 的空间分布特征及影响因素[J]. 干旱区资源与环境, 2022, 36(1): 89-95.

    Ge T T, Zhou J L, Zeng Y Y. Spatial distribution characteristics of groundwater "three-nitrogen" in the plain area of the Keriya River basin in Xinjiang[J]. Journal of Arid Land Resources and Environment, 2022, 36(1): 89-95.

    [37]

    吴嘉铃, 王莹, 胡倩, 等. 雷州半岛地下水水化学特征及成因分析[J]. 安全与环境工程, 2022, 29(1): 145-153, 162.

    Wu J L, Wang Y, Hu Q, et al. Hydrochemical characteristics and genetic analysis of groundwater in Leizhou Peninsula[J]. Safety and Environmental Engineering, 2022, 29(1): 145-153, 162.

    [38]

    黄俊霖, 郑明霞, 苏婧, 等. 奎河河水入渗对河岸带地下水氨氮和硝酸盐氮浓度的影响[J]. 环境科学研究, 2020, 33(2): 421-430.

    Huang J L, Zheng M X, Su J, et al. Effects of Kuihe River infiltration on the concentration of ammonia nitrogen and nitrate nitrogen in groundwater of riparian zone[J]. Research of Environmental Sciences, 2020, 33(2): 421-430.

    [39]

    李丽君, 李旭光. 西辽河平原浅层地下水中"三氮"分布特征及健康风险评价[J]. 地质与资源, 2024, 33(1): 90-97. DOI: 10.13686/j.cnki.dzyzy.2024.01.011

    Li L J, Li X G. Distribution of nitrogen in the shallow groundwater of West Liaohe River Plain and health risk assessment[J]. Geology and Resources, 2024, 33(1): 90-97. DOI: 10.13686/j.cnki.dzyzy.2024.01.011

    [40]

    杨国华, 冯文新, 孟博. 不同空间插值方法对某灌区地下水氮浓度分析结果的影响[J]. 成都理工大学学报(自然科学版), 2021, 48(4): 488-496.

    Yang G H, Feng W X, Meng B. Influence of different spatial interpolation methods on the analysis results of groundwater nitrogen pollution in an irrigated area[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2021, 48(4): 488-496.

  • 加载中

(15)

(1)

计量
  • 文章访问数:  165
  • PDF下载数:  181
  • 施引文献:  0
出版历程
收稿日期:  2023-06-12
修回日期:  2023-08-31
刊出日期:  2024-10-25

目录