-
摘要:
基于鄂伦春旗东部地区3 000 km2 1∶ 25万土地质量地球化学调查获取的土壤养分和土壤环境数据,参照DZ/T 0295《土地质量地球化学评价规范》和GB15618《土壤环境质量农用地土壤污染风险管控标准(试行)》,对研究区土壤养分丰缺情况和环境质量进行评价. 结果表明:研究区土壤养分以一等(丰富)和二等(较丰富)为主,分别占研究区面积的75.1%和24.4%,尚无养分四等(较缺乏)和五等(缺乏)土壤存在,其中B、Cu、Mg以五等(缺乏)为主;土壤环境质量以一等(无风险)为主,占97%以上,土壤Zn、Hg、Pb全区均为一等(无风险)等级;土地质量地球化学综合等级以一等(优质)为主,面积为2 920 km2,占总面积的97.34%. 本研究可为鄂伦春旗农业经济高质量发展提供地质数据支撑.
Abstract:Based on the soil nutrient and environmental data obtained from the 1 ∶ 250 000 geochemical survey of land quality covering 3 000 km2 in eastern Oroqen Qi, this study evaluates the soil nutrient abundance/deficiency and environmental quality in accordance with DZ/T 0295 "Specifications for Geochemical Evaluation of Land Quality" and GB15618 "Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land (Trial)". The results show that soil nutrient in the study area is predominantly assigned as Grade Ⅰ (abundant) and Grade Ⅱ (relatively abundant), accounting for 75.1% and 24.4% of the total area respectively. No Grade Ⅳ (relatively deficient) or Grade Ⅴ(deficient) nutrient soils are identified yet, although B, Cu and Mg are deficient. The soil environmental quality is primarily classified as Grade Ⅰ (risk-free), covering over 97% of the area, with Zn, Hg and Pb concentrations maintaining risk-free grade throughout the region. The comprehensive geochemical land quality is mainly Grade Ⅰ (excellent), encompassing 2 920 km2 or 97.34% of the total area. This study may provide geological data support for promoting high-quality agricultural economic development in Oroqen Qi.
-
Key words:
- soil nutrient /
- soil environment /
- characteristic land /
- land evaluation /
- Oroqen Qi /
- Inner Mongolia
-
-
表 1 土壤元素分析方法及检出限
Table 1. Analysis methods and detection limits of soil elements
指标 检出限 分析方法 N 19 容量法(VOL) P 6 X射线荧光光谱法(XRF) K2O 0.02 X射线荧光光谱法(XRF) Corg 0.03 容量法(VOL) S 18 容量法(VOL) Mn 0.30 电子耦合发射光谱法(ICP-OES) B 1 发射光谱法(ES) Fe2O3 0.05 X射线荧光光谱法(XRF) CaO 0.05 X射线荧光光谱法(XRF) MgO 0.05 X射线荧光光谱法(XRF) Mo 0.06 等离子发射光谱法(ICP-MS) Ge 0.06 原子荧光法(AFS) As 0.5 原子荧光法(AFS) Cd 0.02 等离子发射光谱法(ICP-MS) Cr 1.8 X射线荧光光谱法(XRF) Hg 0.0003 原子荧光法(AFS) Cu 0.9 X射线荧光光谱法(XRF) Pb 1 X射线荧光光谱法(XRF) Zn 0.3 电子耦合发射光谱法(ICP-OES) Ni 0.046 X射线荧光光谱法(XRF) pH 0.10 离子选择电极法(ISE) 含量单位:氧化物为%,其他为10-6. 表 2 土壤养分地球化学综合等级
Table 2. Comprehensive geochemical grading of soil nutrient
等级 一等 二等 三等 四等 五等 f养综 ≥ 4.5 <4.5~3.5 <3.5~2.5 <2.5~1.5 <1.5 表 3 重金属单元素污染风险等级划分标准
Table 3. Grading standards for pollution risk of single heavy metal elements
土壤环境地球化学等级 一等 二等 三等 污染风险 无风险 风险可控 风险较高 划分方法 Ci ≤ Si Si ≤ Ci ≤ Gi Gi>Ci 注:Ci为土壤中指标某一重金属i的实测浓度;Si为重金属i的污染风险筛选值;Gi为重金属i的污染风险管控值. 表 4 土地质量地球化学综合等级
Table 4. Comprehensive geochemical grading of land quality
土地质量地球化学综合等级 环境质量地球化学综合等级 一级(无风险) 二级(风险可控) 三级(风险较高) 养分地球化学综合等级 一等(丰富) 一等(优质) 三等(中等) 五等(劣等) 二等(较丰富) 一等(优质) 三等(中等) 五等(劣等) 三等(中等) 二等(良好) 三等(中等) 五等(劣等) 四等(较缺乏) 三等(中等) 三等(中等) 五等(劣等) 五等(缺乏) 四等(差等) 四等(差等) 五等(劣等) 表 5 土地质量综合评价结果统计
Table 5. Comprehensive evaluation statistic result of land quality
指标 一等(优质) 二等(良好) 三等(中等) 四等(差等) 五等(劣等) 面积/km2 占比/% 面积/km2 占比/% 面积/km2 占比/% 面积/km2 占比/% 面积/km2 占比/% 土地质量综合 2920 97.34 16 0.53 64 2.13 0 0 0 0 -
[1] 王磊, 卓小雄, 吴天生, 等. 基于1∶ 25万和1∶ 5万土地质量地球化学调查评价的土壤元素累积趋势预测——以广西南宁市西乡塘区为例[J]. 物探与化探, 2023, 47(1): 1-13.
Wang L, Zhuo X X, Wu T S, et al. Prediction of the soil element accumulation trends based on 1∶ 250 000 and 1∶ 50 000 geochemical surveys and assessments of land quality: A case study of Xixiangtang District, Nanning City, Guangxi Zhuang Autonomous Region[J]. Geophysical & Geochemical Exploration, 2023, 47(1): 1-13.
[2] 姜冰, 张海瑞, 刘阳, 等. 青州市南张楼村土地质量地球化学特征及特色土地资源评价[J]. 山东国土资源, 2022, 38(1): 54-59.
Jiang B, Zhang H R, Liu Y, et al. Geochemical characteristic of land quality and typical land resources evaluation in Nanzhanglou Village in Qingzhou City[J]. Shandong Land and Resources, 2022, 38(1): 54-59.
[3] 姜长松, 刘进, 谢静博, 等. 冀中平原典型区土地质量地球化学评价[J]. 安徽农学通报, 2023, 29(9): 153-156.
Jiang C S, Liu J, Xie J B, et al. Geochemical evaluation of land quality in typical areas of Jizhong Plain[J]. Anhui Agricultural Science Bulletin, 2023, 29(9): 153-156. (in Chinese)
[4] 常婵, 高艳芳, 孙彬彬, 等. 土地质量地球化学调查土壤采样点智能化布设研究[J]. 物探化探计算技术, 2023, 45(6): 824-832. doi: 10.3969/j.issn.1001-1749.2023.06.15
Chang C, Gao Y F, Sun B B, et al. Research on intelligent arrangement of soil sampling points in a geochemical survey of land quality[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2023, 45(6): 824-832. doi: 10.3969/j.issn.1001-1749.2023.06.15
[5] 刘国栋, 杨泽, 戴慧敏, 等. 黑龙江省海伦市长发镇土地质量地球化学评价及开发建议[J]. 地质与资源, 2020, 29(6): 533-542. doi: 10.13686/j.cnki.dzyzy.2020.06.005
Liu G D, Yang Z, Dai H M, et al. Geochemical evaluation of land quality and development suggestion of land in Hailun City, Heilongjiang Province[J]. Geology and Resources, 2020, 29(6): 533-542. doi: 10.13686/j.cnki.dzyzy.2020.06.005
[6] 中华人民共和国国土资源部. DZ/T 0295—2016土地质量地球化学评价规范[S]. 北京: 中国标准出版社, 2016.
Ministry of Land and Resources, PRC. DZ/T 0295—2016 Determination of land quality geochemical evaluation[S]. Beijing: Standards Press of China, 2016.
[7] 环境保护部, 国家质量监督检验检疫总局. GB 15618—2018土壤环境质量农用地土壤污染风险管控标准(试行)[S]. 北京: 中国标准出版社, 2019.
Ministry of Ecology and Environment of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB 15618—2018 Soil environmental quality risk control standard for soil contamination of agricultural land[S]. Beijing: Standards Press of China, 2019. (in Chinese)
[8] 陈兴, 吴开彬, 王军, 等. 贵州省仁怀市耕地土壤养分地球化学特征及其影响因素研究[J]. 中国地质, 2022, 49(3): 860-879.
Chen X, Wu K B, Wang J, et al. Geochemical characteristics and influencing factors of soil nutrients in cultivated land in Renhuai, Guizhou Province[J]. Geology in China, 2022, 49(3): 860-879.
[9] 李秋燕, 张一鹤, 魏明辉, 等. 海伦市土壤主要微量元素空间分布特征[J]. 物探与化探, 2022, 46(5): 1114-1120.
Li Q Y, Zhang Y H, Wei M H, et al. Spatial distribution of the soil trace elements in Hailun City[J]. Geophysical and Geochemical Exploration, 2022, 46(5): 1114-1120.
[10] 袁淑雅, 贺晶, 苏德荣. 降水格局变化和放牧对草地土壤磷转化影响的研究进展[J]. 草地学报, 2024, 32(1): 25-36.
Yuan S Y, He J, Su D R. Advances in the effects of precipitation pattern change and grazing on soil phosphorus conversion in grassland [J]. Acta Agrestia Sinica, 2024, 32(1): 25-36.
[11] 魏明辉, 许江, 李秋燕, 等. 内蒙古鄂伦春旗土壤钼元素的分布特征及主要影响因素[J]. 地质与资源, 2020, 29(6): 609-613. doi: 10.13686/j.cnki.dzyzy.2020.06.017
Wei M H, Xu J, Li Q Y, et al. Distribution characteristics and main influencing factors of soil molybdenum in Oroqen Qi, Inner Mongolia [J]. Geology and Resources, 2020, 29(6): 609-613. doi: 10.13686/j.cnki.dzyzy.2020.06.017
[12] 陈玉真, 单睿阳, 王峰, 等. 闽中茶园土壤和茶叶铁锰含量及影响因素研究[J]. 福建农业学报, 2018, 33(9): 986-993.
Chen Y Z, Shan R Y, Wang F, et al. Factors affecting iron and manganese contents of tea leaves and plantation soil in central Fujian [J]. Fujian Journal of Agricultural Sciences, 2018, 33(9): 986-993.
[13] 张一鹤, 杨泽, 戴慧敏, 等. 穆棱河-兴凯湖平原土地质量地球化学评价[J]. 地质与资源, 2021, 30(1): 62-70. doi: 10.13686/j.cnki.dzyzy.2021.01.008
Zhang Y H, Yang Z, Dai H M, et al. Geochemical evaluation of land quality in Muling River-Xingkai Lake Plain[J]. Geology and Resources, 2021, 30(1): 62-70. doi: 10.13686/j.cnki.dzyzy.2021.01.008
[14] 方士武, 骆方明. 无为县耕地土壤有效锌含量评价与分析[J]. 现代农业科技, 2020(10): 160-161.
Fang S W, Luo F M. Evaluation and analysis of available zinc content in cultivated soil in Wuwei County[J]. Modern Agricultural Science and Technology, 2020(10): 160-161. (in Chinese)
[15] 赵阿娟, 刘琼峰, 周世民, 等. 白云石粉与氧化镁肥对植烟土壤与烟叶钙镁营养元素的影响[J]. 中国农学通报, 2024, 40(1): 7-11.
Zhao A J, Liu Q F, Zhou S M, et al. Effects of dolomite powder and magnesium oxide fertilizer on calcium and magnesium nutrient elements in tobacco planting soil and tobacco leaves[J]. Chinese Agricultural Science Bulletin, 2024, 40(1): 7-11.
[16] 段轶仁, 杨忠芳, 杨琼, 等. 广西北部湾地区土壤锗分布特征、影响因素及其生态环境评价[J]. 中国地质, 2020, 47(6): 1826-1837.
Duan Y R, Yang Z F, Yang Q, et al. The distribution, influencing factors and ecological environment evaluation of soil germanium in Beibu Gulf of Guangxi Zhuang Autonomous Region[J]. Geology in China, 2020, 47(6): 1826-1837.
[17] 齐小芳, 程智慧. 植物对锗的吸收利用及其生理功能研究进展[J]. 中国蔬菜, 2020(8): 14-18.
Qi X F, Cheng Z H. Research progress on absorption and utilization of germanium (Ge) and its physiological function in plant[J]. China Vegetables, 2020(8): 14-18.
[18] 马琦琦, 李丽君, 王斌, 等. 硼对藜麦抗氧化酶活性的影响[J]. 安徽农业科学, 2023, 51(24): 139-143.
Ma Q Q, Li L J, Wang B, et al. Effects of boron on the antioxidant enzymes activity of quinoa[J]. Journal of Anhui Agricultural Sciences, 2023, 51(24): 139-143.
[19] 赫丽飞, 周仲乐, 马春婕, 等. 植物铜转运蛋白结构、功能及调控机制[J]. 中国细胞生物学学报, 2022, 44(12): 2411-2420.
He L F, Zhou Z L, Ma C J, et al. Structure, function and regulatory mechanism of COPT in plants[J]. Chinese Journal of Cell Biology, 2022, 44(12): 2411-2420.
[20] 尤垂淮, 孙青慧, 陈晟, 等. 镁营养对苦瓜生长发育及生理代谢的影响[J]. 热带作物学报, 2021, 42(12): 3545-3552.
You C H, Sun Q H, Chen S, et al. Effects of magnesium nutrition on the growth and development of Momordica charantia and its physiological metabolism[J]. Chinese Journal of Tropical Crops, 2021, 42(12): 3545-3552.
-