Geochemistry and genesis of zinc-rich soil in Yao'an County, central Yunnan Province
-
摘要:
基于滇中大姚、姚安、南华、双柏四县土地质量地球化学调查数据,研究姚安县土壤地球化学特征及富锌成因. 结果表明:姚安县表层土壤富锌(含量大于等于84×10-6)面积713.68 km2,占比41.94%. 受地质背景、成土母质、酸碱度等因素的影响,锌高值区主要分布于太平镇-栋川镇-光禄镇沿线平坝区内,呈近南北向面状展布. 以姚安平坝区为例,研究土壤富锌成因,认为锌主要来源于区内富碱斑岩区的含锌岩石矿物风化,受河流搬运作用,由于黏土的吸附作用,于第四系中坝区形成次生富集.
Abstract:Based on the geochemical survey data of land quality of four counties(Dayao, Yao'an, Nanhua and Shuangbai) in central Yunnan Province, this paper studies the soil geochemical characteristics and Zn enrichment genesis in Yao'an County. The results show that the Zn-rich surface soil(with Zn content greater than or equal to 84×10-6) covers an area of 713.68 km2, accounting for 41.94% of the total area. Influenced by factors such as geological background, soil parent materials, and pH levels, the high-Zn zones are primarily distributed in the flatland areas along Taiping Town-Dongchuan Town-Guanglu Town, exhibiting a nearly north-south belt. Taking the Yao'an flatland as an example, the study on Zn enrichment genesis reveals that Zn primarily originates from the weathering of minerals in Zn-bearing rocks in alkali-rich porphyry areas. Through river transportation and subsequent clay adsorption processes, secondary Zn enrichment is completed in the Quaternary central flatland areas.
-
Key words:
- Zn-rich soil /
- geochemistry /
- genesis /
- Yao'an County /
- Yunnan Province
-
-
表 1 研究区成土母质划分
Table 1. Classification of soil parent materials in the study area
成土母质类别 涉及地层(岩体) 主要岩性 面积/km2 碎屑岩区风化物 侏罗系、白垩系 砂岩、灰岩、泥岩、砂质泥岩、粉砂岩 1554.45 富碱斑岩区风化物 喜马拉雅期碱性粗面岩、正长斑岩,煌斑岩脉、云斜煌斑岩脉 碱性粗面岩、正长斑岩、煌斑岩、云斜煌斑岩 12.81 残坡积物 新近系 灰色砂岩、砂质泥岩夹煤层 14.80 冲洪积物 第四系 黏土、砂砾等 119.36 表 2 姚安县土壤锌含量特征
Table 2. Characteristics of Zn content in the soil of Yao'an County
统计单元 样品数 平均值 中位数 标准离差 变异系数 最大值 最小值 表层 算术平均 503 85.9 81.7 29.31 0.34 336 22 剔除高低值 473 81.1 81.2 15.59 0.19 127 34.6 云南省表层土壤* 6178 96 86 41 0.4 218 6 深层 算术平均 137 87.3 83.5 25.03 0.29 256 45.2 剔除高低值 133 84.6 82.9 18.04 0.21 137 45.2 云南省深层土壤* 1624 92 84 35 0.4 197 22 *数据引自文献[8]. 含量单位:10-6(质量分数). 表 3 锌元素在各统计单元中的分布特征
Table 3. Distribution characteristics of Zn in each statistical unit
统计单元 样品数 平均值 中位数 标准离差 变化系数 最大值 最小值 浓集克拉克值 第四系 32 94.31 94.5 21.88 0.23 143 53.4 1.10 新近系 4 84.23 82.9 6.61 0.08 93.4 77.7 0.98 碎屑岩区 358 80.08 80.75 13.13 0.32 336 22 0.93 富碱斑岩区 4 149.08 130.5 79.69 0.53 260 75.3 1.73 含量单位:10-6(质量分数). 表 4 灌溉水样品锌含量
Table 4. Zn content in irrigation water samples
采样地点 蜻蛉河上游 双甸河 洋派水库 康朗河 光禄镇水井 自久海水库 平均值/(μg/L) 1180 8.23 4.84 1.05 6.81 11 表 5 各主要水系底泥样品锌含量
Table 5. Zn content in aquatic sediment samples from major river systems
水系 Zn平均值/10-6 Zn最大值/10-6 石者河 87 136 弥兴大河 105.09 136 渔泡江 81.6 81.6 马游河 81.58 108 梯子河 83.7 83.7 康朗河 42.8 42.8 中运河(蜻蛉河中段) 132.5 199 双甸河(蜻蛉河上游) 192.26 493 洋派水库 61.28 88.7 紫贝乌河 65.5 71.5 表 6 土壤物理化学指标相关性分析统计表
Table 6. Correlation analysis statistics of soil physical and chemical indicators
pH SOM TFe2O3 Mn Al2O3 Pb Ag Zn pH 1 SOM -0.018 1 TFe2O3 0.194** 0.145** 1 Mn -0.129** 0.337** 0.467** 1 Al2O3 0.003 0.110* 0.806** 0.382** 1 Pb -0.058 0.082 0.094* 0.266** 0.174** 1 Ag -0.079 0.139** 0.014 0.258** 0.152** 0.941** 1 Zn 0.090* 0.244** 0.457** 0.474** 0.481** 0.540** 0.471** 1 *表示p<0.05;**表示p<0.01. -
[1] 李明辉, 陈富荣, 张笑蓉, 等. 皖西大别山区富锌土壤分布特征及成因分析[J]. 地质调查与研究, 2019, 42(3): 235-240.
Li M H, Chen F R, Zhang X R, et al. Distribution characteristics and genetic analysis of zinc-enriched soil in the Dabie Mountain area, western Anhui Province[J]. Geological Survey and Research, 2019, 42(3): 235-240.
[2] 杨鉴, 张珍明, 陈祖拥, 等. 贵州省典型茶园土壤锌含量空间异质性及影响因素[J]. 东北农业大学学报, 2023, 54(12): 21-31, doi: 10.19720/j.cnki.issn.1005-9369.2023.12.003.
Yang J, Zhang Z M, Chen Z Y, et al. Spatial heterogeneity and influencing factors of zinc content in typical tea garden soils in Guizhou Province[J]. Journal of Northeast Agricultural University, 2023, 54 (12): 21-31, doi: 10.19720/j.cnki.issn.1005-9369.2023.12.003.
[3] 张家春, 林昌虎, 杨钧屹, 等. 贵州野生白及生长土壤的化学特性及微量元素特征分析[J]. 西南农业学报, 2019, 32(8): 1839-1844, doi: 10.16213/j.cnki.scjas.2019.8.024.
Zhang J C, Lin C H, Yang J Y, et al. Chemical properties and microelement characteristics of soil for growth of wild Bletilla striata in Guizhou[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(8): 1839-1844, doi: 10.16213/j.cnki.scjas.2019.8.024.
[4] 苏欣悦, 王晋峰, 孙楠, 等. 大理烟田土壤有效锌、钼和硼含量的时空变异及其影响因素[J]. 植物营养与肥料学报, 2023, 29(12): 2371-2380.
Su X Y, Wang J F, Sun N, et al. Temporal and spatial variation of soil available zinc, molybdenum and boron contents in Dali tobacco-growing fields and the influencing factors[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(12): 2371-2380.
[5] 马旭东, 余涛, 杨忠芳, 等. 四川省邻水县土壤锌地球化学特征及玉米水稻籽实锌含量预测[J]. 中国地质, 2022, 49(1): 324-335, doi: 10.12029/gc20220121.
Ma X D, Yu T, Yang Z F, et al. Geochemical characteristics of zinc in soil and prediction of zinc content in maize and rice grains in Linshui County[J]. Geology in China, 2022, 49(1): 324-335, doi: 10.12029/gc20220121.gc20220121.
[6] 齐永荣. 云南姚安县老街子铅矿地质特征与成因探讨[J]. 云南地质, 2018, 37(3): 320-324.
Qi Y R. A probe into the geological feature and genesis of Laojiezi Pb deposit in Yaoan, Yunnan[J]. Yunnan Geology, 2018, 37(3): 320-324.
[7] 吴鹏, 杨航, 韩润生, 等. 滇中楚雄盆地老街子铅-银矿床镜铁矿特征及地质意义[J]. 岩石学报, 2019, 35(5): 1489-1502.
Wu P, Yang H, Han R S, et al. Signature and geological significance of the specularite from the Laojiezi Pb-Ag deposit in the Chuxiong Basin, Central Yunnan, SW China[J]. Acta Petrologica Sinica, 2019, 35(5): 1489-1502.
[8] 侯青叶, 杨忠芳, 余涛, 等. 中国土壤地球化学参数[M]. 北京: 地质出版社, 2020: 2553-2850.
Hou Q Y, Yang Z F, Yu T, et al. Soil geochemical dataset of China [M]. Beijing: Geological Publishing House, 2020: 2553-2850.
[9] 黄加忠, 杨明龙, 王晓龙, 等. 四川省瓦岗地区水系沉积物地球化学特征及找矿方向[J]. 华东地质, 2024, 45(3): 332-344.
Huang J Z, Yang M L, Wang X L, et al. Geochemical characteristics of stream sediments and prospecting directions in Wagang area of Sichuan Province[J]. East China Geology, 2024, 45(3): 332-344.
[10] 秦丹鹤, 侯红星, 邵兴坤. 青海曲旁浪斜地区水系沉积物地球化学特征及找矿远景[J]. 地质与资源, 2023, 32(4): 418-426.
Qin D H, Hou H X, Sao X K. Geochemistry of stream sediments and exploration prospects in Qupanglangxie area, Qinghai Province[J]. Geology and Resources, 2023, 32(4): 418-426.
[11] 崔玉静, 张旭红, 王丽明. 广西某污染区金属元素在土壤-植物系统中的迁移规律[J]. 生态学杂志, 2008, 27(10): 1822-1825.
Cui Y J, Zhang X H, Wang L M. Transfer patterns of metal elements in soil-plant system in a contaminated area in Guangxi, China[J]. Chinese Journal of Ecology, 2008, 27(10): 1822-1825.
[12] 郭尚其, 周洁军, 农泽喜. 广西某铅锌矿水文地质调查与重金属迁移规律研究[J]. 矿产与地质, 2019, 33(3): 567-572.
Guo S Q, Zhou J J, Nong Z X. Hydrogeological investigation and heavy metal migration regularity study of a Pb-Zn deposit in Guangxi [J]. Mineral Resources and Geology, 2019, 33(3): 567-572.
[13] 刘银飞, 孙彬彬, 贺灵, 等. 福建龙海土壤垂向剖面元素分布特征[J]. 物探与化探, 2016, 40(4): 713-721.
Liu Y F, Sun B B, He L, et al. Vertical distribution of elements in soil profiles in Longhai, Fujian Province[J]. Geophysical and Geochemical Exploration, 2016, 40(4): 713-721.
[14] 汤明, 董旭, 姜明亮. 石台县富锌土壤分布特征及成因分析[J]. 安徽农学通报, 2020, 26(23): 97-99, 117.
Tang M, Dong X, Jiang M L. Distribution characteristics and genetic analysis of zinc-rich soil in Shitai County, Anhui[J]. Anhui Agricultural Science Bulletin, 2020, 26(23): 97-99, 117. (in Chinese)
[15] 刘志坚, 张琇, 董元华, 等. 宁夏卫宁平原土壤锌地球化学特征与富锌小麦种植区预测[J]. 中国地质, 2024, 51(4): 1319-1330, doi: 10.12029/gc20220705002.
Liu Z J, Zhang X, Dong Y H, et al. Geochemical characteristics of zinc in soil and prediction of Zn-rich wheat cultivating areas in Weining Plain, Northwest China[J]. Geology in China, 2024, 51 (4): 1319-1330, doi: 10.12029/gc20220705002.
[16] 张一鹤, 杨泽, 戴慧敏, 等. 穆棱河-兴凯湖平原土地质量地球化学评价[J]. 地质与资源, 2021, 30(1): 62-70, doi: 10.13686/j.cnki.dzyzy.2021.01.008.
Zhang Y H, Yang Z, Dai H M, et al. Geochemical evaluation of land quality in Muling River-Xingkai Lake Plain[J]. Geology and Resources, 2021, 30(1): 62-70, doi: 10.13686/j.cnki.dzyzy.2021.01.008.
[17] 高文文, 刘景双, 王洋. 有机质对冻融黑土重金属Zn赋存形态的影响[J]. 中国生态农业学报, 2010, 18(1): 147-151.
Gao W W, Liu J S, Wang Y. Effect of organic matter on fractional transformation of Zn in black soils under freeze-thaw cycle[J]. Chinese Journal of Eco-Agriculture, 2010, 18(1): 147-151.
[18] 陆建衡. 汉源铅锌矿区土壤重金属分布特征及镉、锌迁移行为研究[D]. 成都: 成都理工大学, 2019: 36-69.
Lu J H. A study on the spatial distribution of heavy metal elements and cadmium, zinc migration behavior in Hanyuan lead-zinc mining area[D]. Chengdu: Chengdu University of Technology, 2019: 36-69.
[19] 侯良刚, 袁玲, 李徐瑾. 云南姚安县老街子碱性杂岩体特征及稀土找矿前景[J]. 云南地质, 2020, 39(1), 20-25.
Hou L G, Yuan L, Li X J. The feature and REE prospecting potentiality of Laojiezi alkaline complex body in Yaoan, Yunnan[J]. Yunnan Geology, 2020, 39(1): 20-25.
[20] 赵建, 师华定, 吴啸, 等. 遵义市土壤锌空间分布特征研究[J]. 农业资源与环境学报, 2019, 36(3): 298-303.
Zhao J, Shi H D, Wu X, et al. Study on spatial distribution of zinc in soils in Zunyi City, China[J]. Journal of Agricultural Resources and Environment, 2019, 36(3): 298-303.
[21] 杨策, 杨文松, 陆瀛龙, 等. 楚雄州不同海拔高度植烟土壤养分特征分析[J]. 湖南农业科学, 2022(6): 34-39, doi: 10.16498/j.cnki.hnnykx.2022.006.009.
Yang C, Yang W S, Lu Y L, et al. Analysis of soil nutrient characteristics at different altitudes in Chuxiong[J]. Hunan Agricultural Sciences, 2022(6): 34-39, doi: 10.16498/j.cnki.hnnykx.2022.006.009.
[22] 左健扬, 方璐, 赵柳青, 等. 宁夏固原地区土壤地球化学特征和养分状况评价[J]. 地质与资源, 2022, 31(4): 523-529, doi: 10.13686/j.cnki.dzyzy.2022.04.009.
Zuo J Y, Fang L, Zhao L Q, et al. Soil geochemistry and nutrient evaluation in Guyuan City of Ningxia[J]. Geology and Resources, 2022, 31(4): 523-529, doi: 10.13686/j.cnki.dzyzy.2022.04.009.
-