Optimization of geological hazard susceptibility assessment in mountainous townships based on identification of deformation zones
-
摘要:
西安市仁宗街道属典型的山区乡镇,地质环境复杂,人类工程活动频繁,崩滑灾害多发频发. 为合理预测山区乡镇地质灾害的空间分布特征,以西安市仁宗街道为研究区,开展了山区乡镇地质灾害易发性评价优化方法研究. 在仁宗街道大比例尺地质灾害调查和孕灾条件分析的基础上,以栅格为评价单元,选取坡度、坡高、坡向、坡型、工程岩组、斜坡结构、距道路距离、切坡程度、植被覆盖度等9个影响因子,采用综合指数法对研究区地质灾害易发性进行评价. 将现场调查确定的变形区和地质灾害点范围栅格化和定量化,对综合指数法的评价结果进行优化,并分别利用ROC曲线进行检验. 结果显示:评价结果精度从81.7%提高至92.4%,有效提高了乡镇地质灾害易发性评价的准确性,可为地质灾害防灾减灾提供科学依据.
Abstract:The Renzong Subdistrict in Xi'an City is a typical mountainous township characterized by complex geology, frequent human engineering activities, and recurrent landslide and collapse disasters. To reasonably predict the spatial distribution characteristics of geohazards in mountainous townships, this paper selects Renzong as the study area for the optimization methods of geohazard susceptibility assessment in mountainous townships. Based on the large-scale geohazard survey and analysis of disaster-pregnant conditions, taking grid cells as the evaluation units, nine impact factors, including slope gradient, slope height, slope aspect, slope type, engineering rock group, slope structure, distance from roads, slope cutting degree, and vegetation coverage, are selected for geohazard susceptibility assessment in the study area with composite index method. Besides, the deformation zones and geohazard sites identified by field survey are rasterized and quantified to optimize the evaluation results of composite index method, with validation by ROC curves. The results show that the evaluation precision has increased from 81.7% to 92.4%, effectively enhancing the accuracy of geohazard susceptibility assessment for townships. The method provides a scientific basis for geohazard prevention and mitigation.
-
-
表 1 评价指标体系及量化分值表
Table 1. Evaluation index system and quantitative scores
评价指标 权重 指标分类 赋值 评价指标 权重 指标分类 赋值 坡度/(°) 0.184 <15 1 岩土体 0.173 块状坚硬花岗岩类 2 15~30 2 块状坚硬变质岩类 3 30~45 3 层状软弱碎屑岩类 4 45~60 4 黄土及黄土状土类 5 >60 5 距道路距离/m 0.131 <50 5 坡向/(°) 0.048 北(337.5~22.5) 1 50~100 4 北东(22.5~67.5) 2 100~200 3 东(67.5~112.5) 3 200~500 2 南东(112.5~157.5) 5 >500 1 南(157.5~202.5) 4 NDVI 0.071 0.28~0.43 5 南西(202.5~247.5) 3 0.43~0.58 4 西(247.5~292.5) 2 0.58~0.73 3 北西(292.5~337.5) 1 0.73~0.88 2 坡高/m 0.131 <20 1 斜坡结构 0.091 岩质斜坡 2 20~40 2 崩滑堆积体斜坡 3 40~60 3 岩土复合斜坡 4 60~80 4 土质斜坡 5 >80 5 切坡程度/m 0.131 <5 1 坡型 0.040 凸形 3 5~10 2 凹形 2 10~15 3 直坡 5 15~20 4 阶梯 4 >20 5l 表 2 地质灾害易发性综合评价结果统计表
Table 2. Statistics of comprehensive assessment results of geohazard susceptibility
易发性等级 综合评价指数 栅格单元数 面积占例(a)/% 地质灾害点数量/个 灾害点占比(b)/% b/a 极高易发区 3.50<Yi≤5.55 224226 9.05 34 85 9.39 高易发区 3.04<Yi≤3.50 798390 32.21 5 12.5 0.39 中易发区 2.60<Yi≤3.04 877436 35.4 1 2.5 0.07 低易发区 1.65≤Yi≤2.60 578348 23.34 总计 2478400 100 40 100 -
[1] 张茂省, 薛强, 贾俊, 等. 山区城镇地质灾害调查与风险评价方法及实践[J]. 西北地质, 2019, 52(2): 125-135.
Zhang M S, Xue Q, Jia J, et al. Methods and practices for the nvestigation and risk assessment of geo-hazards in mountainous towns[J]. Northwestern Geology, 2019, 52(2): 125-135.
[2] 齐信, 唐川, 陈州丰, 等. 地质灾害风险评价研究[J]. 自然灾害学报, 2012, 21(5): 33-40.
Qi X, Tang C, Chen Z F, et al. Research of geohazards risk assessment[J]. Journal of Natural Disasters, 2012, 21(5): 33-40.
[3] 兰盈盈, 郭昶成, 朱云福. 地质灾害易发性评价方法综述[J]. 地质与资源, 2024, 33(1): 65-73. doi: 10.13686/j.cnki.dzyzy.2024.01.008
Lan Y Y, Guo C C, Zhu Y F. Review on the evaluation methods of geological hazard susceptibility[J]. Geology and Resources, 2024, 33 (1): 65-73. doi: 10.13686/j.cnki.dzyzy.2024.01.008
[4] 陈玉, 蔺启忠, 王钦军. 区域地质灾害评价模型综述[J]. 防灾科技学院学报, 2010, 12(4): 42-45.
Chen Y, Lin Q Z, Wang Q J. Summary of regional geological hazard assessment model[J]. Journal of Institute of Disaster Prevention, 2010, 12(4): 42-45.
[5] 徐继维, 张茂省, 范文. 地质灾害风险评估综述[J]. 灾害学, 2015, 30(4): 130-134.
Xu J W, Zhang M S, Fan W. An overview of geological disaster risk assessment[J]. Journal of Catastrophology, 2015, 30(4): 130-134.
[6] 万飞鹏, 杨为民, 邱占林, 等. 甘肃岷县纳古呢沟滑坡-泥石流灾害链成灾机制及其演化[J]. 中国地质, 2023, 50(3): 911-925.
Wang F P, Yang W M, Qiu Z L, et al. Disaster mechanism and evolution of Nagune Gully landslide-debris flow disaster chain in Minxian County, Gansu Province[J]. Geology in China, 2023, 50 (3): 911-925.
[7] 申玉松, 张宸, 王艺杰, 等. 基于CF-LR模型的河南省信阳市地质灾害易发性评价[J]. 地质与资源, 2024, 33(1): 74-81, 134. doi: 10.13686/j.cnki.dzyzy.2024.01.009
Shen Y S, Zhang C, Wang Y J, et al. Geohazard susceptibility assessment based on CF-LR model for Xinyang city, Henan province[J]. Geology and Resources, 2024, 33(1): 74-81, 134. doi: 10.13686/j.cnki.dzyzy.2024.01.009
[8] 陈绪钰, 倪化勇, 李明辉, 等. 基于加权信息量和迭代自组织聚类的地质灾害易发性评价[J]. 灾害学, 2021, 36(2): 71-78.
Chen X Y, Ni H Y, Li M H, et al. Geo-hazard susceptibility evaluation based on weighted information value model and ISODATA cluster[J]. Journal of Catastrophology, 2021, 36(2): 71-78.
[9] 乔德京, 王念秦, 郭有金, 等. 加权确定性系数模型的滑坡易发性评价[J]. 西安科技大学学报, 2020, 40(2): 259-267.
Qiao D J, Wang N Q, Guo Y J, et al. Landslide susceptibility assessment based on weighted certainty factor model[J]. Journal of Xi' an University of Science and Technology, 2020, 40(2): 259-267.
[10] 李雨柯, 赵院冬, 陈伟涛, 等. 基于深度学习的岩体遥感智能解译模型研究——以黑龙江省苇河镇、亚布力镇、绥阳镇地区为例[J]. 地质与资源, 2022, 31(6): 790-797. doi: 10.13686/j.cnki.dzyzy.2022.06.011
Li Y K, Zhao Y D, Chen W T, et al. Remote sensing intelligent interpretation model for rock mass based on deep learning: a case study of Weihe Town, Yabuli Town And Suiyang Town in Heilongjiang Province[J]. Geology and Resources, 2022, 31(6): 790-797. doi: 10.13686/j.cnki.dzyzy.2022.06.011
[11] 王鑫, 王鲜, 郝业, 等. 基于加权信息量法与综合指数法的西安市蒋村街道地质灾害易发性评价对比[J]. 世界地质, 2023, 42(2): 399-408.
Wang X, Wang X, Hao Y, et al. Comparison between weighted information and comprehensive index methods on geological disaster susceptibility evaluation at Jiangcun Street, Xi'an City[J]. Global Geology, 2023, 42(2): 399-408.
[12] 秦关民. 临潼县古地理环境与地质地貌的演变[J]. 陕西师大学报(自然科学版), 1983(2): 138-142.
Qin G M. The evolution of palaeogeographic environment geology and landform in Lintong County[J]. Journal of Shaanxi Teachers University, 1983(2): 138-142.
[13] 王念秦, 姚勇, 周自强, 等. 农村乡镇地质灾害易发性综合评价方法研究[J]. 西安科技大学学报, 2008, 28(4): 657-661, 679.
Wang N Q, Yao Y, Zhou Z Q, et al. Comprehensive evaluation method for geological disasters-prone of rural township[J]. Journal of Xi'an University of Science and Technology, 2008, 28(4): 657- 661, 679.
[14] 周超, 常鸣, 徐璐, 等. 贵州省典型城镇矿山地质灾害风险评价[J]. 武汉大学学报(信息科学版), 2020, 45(11): 1782-1791.
Zhou C, Chang M, Xu L, et al. Risk assessment of typical urban mine geological disasters in Guizhou Province[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1782-1791.
[15] 周秀全, 黄海波, 郑宁, 等. 基于层次分析法的水库蓄水后滑坡易发性评价[J]. 地质与资源, 2022, 31(6): 804-810. doi: 10.13686/j.cnki.dzyzy.2022.06.013
Zhou X Q, Huang H B, Zheng N, et al. Susceptibility assessment of landslide after reservoir impoundment based on analytic hierarchy process[J]. Geology and Resources, 2022, 31(6): 804-810. doi: 10.13686/j.cnki.dzyzy.2022.06.013
[16] 鲁霞, 兰安军, 母浩江, 等. 基于信息量模型的盘州市地质灾害易发性评价[J]. 科学技术与工程, 2020, 20(14): 5544-5551.
Lu X, Lan A J, Mu H J, et al. Geological hazard risk assessment based on information quantity model in Panzhou City[J]. Science Technology and Engineering, 2020, 20(14): 5544-5551.
[17] 王俊德, 杜晓阳, 黄天浩, 等. 河南省嵩县地质灾害风险评价[J]. 中国地质灾害与防治学报, 2023, 34(4): 86-96.
Wagn J D, Du X Y, Huang T H, et al. Risk assessment of geological hazards in Song County, Henan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 86-96.
[18] 李月, 王宁涛, 周超, 等. 基于ROC曲线与确定性系数法集成模型的三峡库区奉节县滑坡易发性评价[J]. 安全与环境工程, 2020, 27(4): 61-70.
Li Y, Wang N T, Zhou C, et al. Evaluation of landslide susceptibility based on ROC and certainty factor method in Fengjie County, Three Gorges Reservoir[J]. Safety and Environmental Engineering, 2020, 27(4): 61-70.
[19] 徐庆方, 何开寿, 胡励耘, 等. 基于危险源识别的山区地质灾害风险定量评价——以贵州省茅台镇为例[J]. 安全与环境工程, 2023, 30(05): 152-165.
Xu Q F, He K S, Hu L Y, et al. Quantitative risk assessment of geological hazards based on hazard source identification: A case study of Maotai Town, Guizhou Province[J]. Safety and Environmental Engineering, 2023, 30(5): 152-165.
[20] 许军强, 张斌, 袁晶, 等. 基于遥感技术的南水北调水源区(河南段)石漠化遥感调查与评价[J]. 世界地质, 2019, 38(4): 1091-1098.
Xu J Q, Zhang B, Yuan J, et al. Remote sensing survey and evaluation of rocky desertification in water source area of South-to-North Water Diversion Project (Henan section) based on remote sensing technology[J]. Global Geology, 2019, 38(4): 1091-1098.
-