-
摘要:
利用电解水改善胶体磨对生石膏的超细粉磨效果,并采用FTIR等手段对溶液和超细磨产品进行了表征。结果表明,电解改性水对生石膏超细磨效果的改善作用明显。在料浆质量浓度为16%、超细磨时间为25 min的条件下,利用电解20 min的改性水可使生石膏超细磨产品的d90从54.6 μm减小至2.21 μm,比表面积则从203 cm2/g增大至2265 cm2/g。当水经电解处理20 min时,水体中自由水的羟基总含量增大了2.42百分点,强化了生石膏表面钙离子活性点与水之间的亲和作用,导致生石膏料浆黏度减小了16.74 mPa·s。上述作用可改善生石膏料浆的流动性并强化胶体磨齿轮对生石膏的剪切作用,使生石膏超细磨产品内部裂纹增多并有利于改性水渗入生石膏内部,使其最强峰面间距、微观应变和位错密度增大而结晶度和晶粒尺寸变小,最终提高了生石膏超细磨效率。
Abstract:Electrolytic water was used to improve the ultrafine grinding effect of raw gypsum with colloid mill, FTIR and other methods were employed to characterize the solution and ultrafine grinding products. The results showed that the electrolysis-modified water had a significant positive effect on the ultrafine grinding of raw gypsum. Under the conditions of raw gypsum slurry concentration of 16% and ultrafine grinding time of 25 min, the d90 of ultrafine grinding product was reduced from 54.6 μm to 2.21 μm, while the specific surface area was promoted from 203 cm2/g to 2265 cm2/g with water modification time of 20 min. When the water was treated by electrolysis for 20 min, the total content of hydrophilic hydroxyl groups of water increased by 2.42 percentage points, which enhanced the affinity between water and active point on raw gypsum surface, resulting in a decrease in the viscosity of raw gypsum slurry by 16.74 mPa·s. The above effects can improve the fluidity of raw gypsum slurry and enhance the shearing effect of colloid mill gear on raw gypsum, which increased the internal cracks of the raw gypsum, the penetration of the modified water into the raw gypsum, and the plane spacing, microscopic strain, dislocation density of the gypsum increased, while the crystallinity and grain size became smaller, and finally the efficiency of raw gypsum superfine grinding was improved.
-
Key words:
- gypsum /
- ultrafine grinding /
- electrolytic modification /
- water /
- crystal structure
-
-
表 1 生石膏原料的多元素分析结果
Table 1. Chemical composition of gypsum
/% CaO SO3 SiO2 MgO Fe2O3 烧失量 31.47 44.68 1.52 1.12 0.15 19.96 -
[1] 徐惠, 常成功, 刘小育, 等. 一种针状纳米碳酸钙的制备方法[J]. 无机盐工业, 2010, 42(1): 17−19. doi: 10.3969/j.issn.1006-4990.2010.01.005
XU H, CHANG C G, LIU X Y, et al. Preparation method of needle-like nano-sized calcium carbonate[J]. Inorganic Chemicals Industry, 2010, 42(1): 17−19. doi: 10.3969/j.issn.1006-4990.2010.01.005
[2] DELIGIANNI D D. Multiwalled carbon nanotubes enhance human bone marrow mesenchymal stem cells’ spreading but delay their proliferation in the direction of differentiation acceleration[J]. Cell adhesion & migration, 2014, 8(6): 558−562.
[3] 鲁林平, 郭芳恩. 高纯度高白度纳米碳酸钙生产技术研究[J]. 化工装备技术, 2018, 39(5): 11−13. doi: 10.16759/j.cnki.issn.1007-7251.2018.10.003
LU L P, GUO F E. Study on the production technology of nanometer calcium carbonate particles with high purity and high whiteness[J]. Chemical Equipment Technology, 2018, 39(5): 11−13. doi: 10.16759/j.cnki.issn.1007-7251.2018.10.003
[4] 刘亚雄. 日本纳米碳酸钙生产工艺及产品介绍[J]. 无机盐工业, 2021, 53(12): 80−84.
LIU Y X. Introduction of production process and products of nano calcium carbonate in Japan[J]. Inorganic Chemicals Industry, 2021, 53(12): 80−84.
[5] 殷鹏飞, 张蓉, 邓玉, 等. 气流粉碎/静电分散与球磨制备超微粉体粒度对比研究[J]. 中国陶瓷, 2018, 54(5): 21−27.
YIN P F, ZHANG R, DENG Y, et al. Comparative study of particle size distribution of micropowder prepared by jet milling/electrostatic dispersion and ball milling[J]. China Ceramics, 2018, 54(5): 21−27.
[6] SHAIBANI M E, GHAMBARI M. Characterization and comparison of gray cast iron powder produced by target jet milling and high energy ball milling of machining scraps[J]. Powder Technology, 2011, 212(1): 278−283. doi: 10.1016/j.powtec.2011.06.002
[7] 张国旺, 刘雅琛, 赵湘, 等. 立式搅拌磨矿机干法超细粉磨重钙研究[J]. 非金属矿, 2000(6): 34−35+20. doi: 10.3969/j.issn.1000-8098.2000.06.013
ZHANG G W, LIU Y C, ZHAO X, et al. Study on dry ultra-fine grinding of heavy calcium by vertical stirred mill[J]. Non-metallic mines, 2000(6): 34−35+20. doi: 10.3969/j.issn.1000-8098.2000.06.013
[8] 马殿普, 普友福, 陈高芳, 等. 二氧化锡超细粉体制备方法综述[J]. 材料导报, 2021, 35(S1): 151−155.
MA D P, PU Y F, CHEN G F, et al. Research progress of preparation methods of ultrafine tin dioxide powders[J]. Materials Reports, 2021, 35(S1): 151−155.
[9] 孙业熙, 苏伟, 杨海林, 等. 一步还原包裹粉工艺制备WC-Co超粗硬质合金[J]. 稀有金属材料与工程, 2016, 45(2): 409−414.
SUN Y X, SU W, YANG H L, et al. Ultra-coarse grain WC-Co cemented carbide from chemical coated powder by one-step hydrogen reduction[J]. Rare Metal Materials and Engineering, 2016, 45(2): 409−414.
[10] 王雯雯, 马晓晓, 王宇斌, 等. 助磨剂EDTA在超细石膏粉体制备过程中的作用机制[J]. 矿产保护与利用, 2021, 41(4): 100−106. doi: 10.13779/j.cnki.issn1001-0076.2021.04.012
WANG W W, MA X X, WANG Y B, et al. Study on the effect mechanism of EDTA on the preparation of ultrafine gypsum powder[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 100−106. doi: 10.13779/j.cnki.issn1001-0076.2021.04.012
[11] 马晓晓, 王宇斌, 华开强, 等. 六偏磷酸钠对制备超细生石膏粉体的助磨作用及其机理研究[J]. 矿产保护与利用, 2021, 41(1): 146−151.
MA X X, WANG Y B, HUA K Q, et al. Effect of sodium hexametaphosphate on preparation of ultrafine gypsum powder and its mechanism[J]. Conservation and Utilization of Mineral Resources, 2021, 41(1): 146−151.
[12] 李淑芹, 王宇斌, 曹德生, 等. 柠檬酸钠对脱硫石膏的超细助磨机理[J]. 化工矿物与加工, 2020, 49(11): 5−8.
LI S Q, WANG Y B, CAO D S, et al. Ultrafine grinding aid mechanism of sodium citrate on desulfurized gypsum[J]. Industrial Minerals & Processing, 2020, 49(11): 5−8.
[13] 唐林生, 冯作锋, 林强. 石灰石超细磨助磨剂及其助磨机理[J]. 中国有色金属学报, 2000(1): 131−135. doi: 10.3321/j.issn:1004-0609.2000.01.031
TANG L S, FENG Z F, LIN Q. Ultrafine grinding aids and its mechanism[J]. The Chinese Journal of Nonferrous Metals, 2000(1): 131−135. doi: 10.3321/j.issn:1004-0609.2000.01.031
[14] 戎鑫, 李建军, 但宏兵, 等. 磁化水的特性、机理及应用研究进展[J]. 材料导报, 2022, 36(9): 65−71.
RONG X, LI J J, DAN H B, et al. Characteristics, mechanism and applications of magnetized water: a review[J]. Materials Reports, 2022, 36(9): 65−71.
[15] 张露之, 张光明, 张楠, 等. 超声水处理中锌基催化剂的研究进展[J]. 水处理技术, 2019, 45(4): 1−5. doi: 10.16796/j.cnki.1000-3770.2019.04.001
ZHANG L Z, ZHANG G M, ZHANG N, et al. Research progress on zn-based catalysts in ultrasonic water treatment[J]. Technology of Water Treatment, 2019, 45(4): 1−5. doi: 10.16796/j.cnki.1000-3770.2019.04.001
[16] YAO J, CHEN L, CHEN X, et al. Formation of inorganic nitrogenous byproducts in aqueous solution under ultrasound irradiation[J]. Ultrasonics Sonochemistry, 2018, 42: 42−47. doi: 10.1016/j.ultsonch.2017.10.033
[17] ZHANG S, LI J, WANG E. Recent progress of ruthenium-based nanomaterials for electrochemical hydrogen evolution[J]. Chem Electro Chem, 2020, 7(22): 4526−4534. doi: 10.1002/celc.202001149
[18] 王真, 何廷树, 王宇斌, 等. 磁化水改善钼粗选作业回收率试验研究[J]. 矿业研究与开发, 2018, 38(9): 72−74. doi: 10.13827/j.cnki.kyyk.2018.09.016
WANG Z, HE T S, WANG Y B, et al. Experimental study on magnetized water improving the recovery rate of molybdenum by roughing[J]. Mining Research and Development, 2018, 38(9): 72−74. doi: 10.13827/j.cnki.kyyk.2018.09.016
[19] 朱巨建, 李晓安, 陈炳辰. 水的磁化处理对赤铁矿的可浮性影响及其机理研究[J]. 中国矿业, 2003(8): 46−48.
ZHU J J, LI X A, CHEN B C. Influence of water magnetization on the floatability of hematite and its mechanism[J]. China Mining Magazine, 2003(8): 46−48.
[20] 王宇斌, 党炜犇, 李慧, 等. 磁化蒸馏水体系下水玻璃对辉钼矿浮选行为的影响[J]. 中国矿业大学学报, 2020, 49(3): 602−608. doi: 10.13247/j.cnki.jcumt.001156
WANG Y B, DANG W B, LI H, et al. Effect of sodium silicate on the flotation behavior of molybdenite in magnetized distilled water system[J]. Journal of China University of Mining & Technology, 2020, 49(3): 602−608. doi: 10.13247/j.cnki.jcumt.001156
[21] ATKINS P W. Physical chemistry[M]. Oxford: Oxford University Press, 1978: 773-774.
[22] 谢水祥, 任雯, 李兴春, 等. 电吸附再生废弃水基钻井液作用机理[J]. 天然气工业, 2019, 39(12): 139−145. doi: 10.3787/j.issn.1000-0976.2019.12.018
XIE S X, REN W, LI X C, et al. Mechanism of electrosorption recycled waste water-based drilling fluid[J]. Natural Gas Industry, 2019, 39(12): 139−145. doi: 10.3787/j.issn.1000-0976.2019.12.018
[23] 毛欣钰, 王宇斌, 王雯雯, 等. 交变外磁场对硫酸钙垢溶解行为的影响及其机理[J]. 无机盐工业, 2022, 54(3): 97−101.
MAO X Y, WANG Y B, WANG W W, et al. Effect of alternating external magnetic field on the dissolution behavior of calcium sulfate scale and its mechanism[J]. Inorganic Chemicals Industry, 2022, 54(3): 97−101.
[24] 田野, 李萍, 马俊林, 等. 高压扭转对难熔金属粉末组织致密及强化的影响[J]. 稀有金属材料与工程, 2017, 46(10): 2987−2992.
TIAN Y, LI P, MA J L, et al. Effects of high-pressure torsion on dense compact and strengthening of refractory powder[J]. Rare Metal Materials and Engineering, 2017, 46(10): 2987−2992.
[25] 李晓, 王巍, 袁帅, 等. 基于X射线衍射和低场核磁共振技术的微波膨胀烟梗收缩机制[J]. 扬州大学学报(农业与生命科学版), 2022, 43(2): 127−134. doi: 10.16872/j.cnki.1671-4652.2022.02.017
LI X, WANG W, YUAN S, et al. Study on the contraction mechanism of microwave expanded tobacco stem based on XRD and LF-NMR techniques[J]. Journal of Yangzhou University(Agricultural and Life Science Edition), 2022, 43(2): 127−134. doi: 10.16872/j.cnki.1671-4652.2022.02.017
[26] 郭铁明, 金硕, 吉瑞芳, 等. Mo粉在球磨过程中的机械力效应[J]. 兰州理工大学学报, 2017, 43(3): 6−9. doi: 10.3969/j.issn.1673-5196.2017.03.002
GUO T M, JIN S, JI R F, et al. Mechanical effect of Mo powder in ball milling process[J]. Journal of Lanzhou University of Technology, 2017, 43(3): 6−9. doi: 10.3969/j.issn.1673-5196.2017.03.002
-