298.2 K四元体系MgCl2+CaCl2+AlCl3+H2O 相平衡研究

何志意, 方滇东, 郑秋风, 任思颖, 罗军, 于旭东. 298.2 K四元体系MgCl2+CaCl2+AlCl3+H2O 相平衡研究[J]. 矿产保护与利用, 2022, 42(6): 153-158. doi: 10.13779/j.cnki.issn1001-0076.2022.06.018
引用本文: 何志意, 方滇东, 郑秋风, 任思颖, 罗军, 于旭东. 298.2 K四元体系MgCl2+CaCl2+AlCl3+H2O 相平衡研究[J]. 矿产保护与利用, 2022, 42(6): 153-158. doi: 10.13779/j.cnki.issn1001-0076.2022.06.018
HE Zhiyi, FANG Diandong, ZHENG Qiufeng, REN Siying, LUO Jun, YU Xudong. Phase Equilibria of Aqueous Quaternary System MgCl2+CaCl2+AlCl3+H2O at 298.2 K[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 153-158. doi: 10.13779/j.cnki.issn1001-0076.2022.06.018
Citation: HE Zhiyi, FANG Diandong, ZHENG Qiufeng, REN Siying, LUO Jun, YU Xudong. Phase Equilibria of Aqueous Quaternary System MgCl2+CaCl2+AlCl3+H2O at 298.2 K[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 153-158. doi: 10.13779/j.cnki.issn1001-0076.2022.06.018

298.2 K四元体系MgCl2+CaCl2+AlCl3+H2O 相平衡研究

详细信息
    作者简介: 何志意(1989—),女,硕士,工程师,研究方向为分析检测;E-mail:2298049880@qq.com
    通讯作者: 于旭东(1985—),男,博士,副教授,研究方向为相平衡与相分离技术;E-mail:xwdlyxd@126.com
  • 中图分类号: TF111.3

Phase Equilibria of Aqueous Quaternary System MgCl2+CaCl2+AlCl3+H2O at 298.2 K

More Information
  • 为获取粉煤灰含铝溶浸液中铝与共存钙、镁之间的作用规律,采用等温溶解平衡法开展了298.2 K时四元体系MgCl2+CaCl2+AlCl3+H2O相平衡研究,测定了平衡液相组成及平衡液相密度,同时,绘制了该四元体系的干基相图、水图、密度-组成图。研究发现:298.2 K四元体系MgCl2+CaCl2+AlCl3+H2O 稳定相图由2个共饱点、4个结晶区以及5条单变量曲线组成,有复盐溢晶石(2MgCl2·CaCl2·12H2O)生成,为复杂四元体系。4个结晶区分别对应3个单盐结晶区MgCl2·6H2O、CaCl2·6H2O、AlCl3·6H2O和1个复盐结晶区2MgCl2·CaCl2·12H2O,结晶区按照AlCl3·6H2O、MgCl2·6H2O、CaCl2·6H2O、2MgCl2·CaCl2·12H2O顺序依次减小,对应AlCl3·6H2O溶解度最小,2MgCl2·CaCl2·12H2O溶解度最大。

  • 加载中
  • 图 1  298.2 K四元体系MgCl2+CaCl2+AlCl3+H2O 稳定相图

    Figure 1. 

    图 2  298.2 K四元体系MgCl2+CaCl2+AlCl3+H2O 共饱点F1处平衡固相XRD谱图

    Figure 2. 

    图 3  298.2 K四元体系MgCl2+CaCl2+AlCl3+H2O 共饱点F2处平衡固相XRD谱图

    Figure 3. 

    图 4  298.2 K四元体系MgCl2+CaCl2+AlCl3+H2O 水含量−组成图

    Figure 4. 

    图 5  298.2 K四元体系MgCl2+CaCl2+AlCl3+H2O 密度−组成图

    Figure 5. 

    表 1  298.2 K四元体系MgCl2+CaCl2+AlCl3+H2O 平衡溶液的溶解度和密度

    Table 1.  The solubilities and densities of the quaternary system MgCl2+CaCl2+AlCl3+H2O at 298.2 K

    编号密度/(g·cm−3)液相组成, w(B) /%干盐指数 J(B) (g/100g S)平衡固相
    J(MgCl2)+J(CaCl2)+J(AlCl3)=100
    w(MgCl2)w(CaCl2)w(AlCl3)w(H2O)J(MgCl2)J(CaCl2)J(AlCl3)J(H2O)
    1, A1.441510.2035.030.0054.7722.5577.450.00121.09CaCl2·6H2O+Tac
    21.44198.9936.000.2254.7819.8979.620.50121.15CaCl2·6H2O+Tac
    31.44358.3936.390.4054.8218.5880.540.89121.33CaCl2·6H2O+Tac
    41.44397.4237.160.5354.8916.4582.371.18121.67CaCl2·6H2O+Tac
    51.44426.6537.850.5954.9114.7583.941.31121.77CaCl2·6H2O+Tac
    61.44625.6138.820.6854.9012.4386.071.50121.73CaCl2·6H2O+Tac
    7, F11.44774.0339.591.4254.968.9587.903.15121.99CaCl2·6H2O+AlCl3·6H2O+Tac
    81.42855.6338.211.2554.9112.4884.742.78121.76AlCl3·6H2O+Tac
    91.41638.5634.711.4155.3219.1677.693.15123.84AlCl3·6H2O+Tac
    101.41509.4133.951.3055.3421.0676.022.92123.9AlCl3·6H2O+Tac
    111.413211.3032.461.0555.1925.2272.432.35123.16AlCl3·6H2O+Tac
    121.413412.2431.580.9755.2127.3370.512.16123.26AlCl3·6H2O+Tac
    13, F21.417113.9729.200.7156.1231.8466.541.62127.92MgCl2·6H2O+AlCl3·6H2O+Tac
    141.417213.3929.810.6556.1530.5467.981.48128.02MgCl2·6H2O+Tac
    151.417014.4428.840.5456.1832.9565.811.24128.20MgCl2·6H2O+Tac
    161.416714.9628.430.4056.2234.1764.930.90128.41MgCl2·6H2O+Tac
    171.416216.0827.600.1056.2236.7263.040.23128.44MgCl2·6H2O+Tac
    181.415816.6527.080.0456.2438.0461.880.09128.50MgCl2·6H2O+Tac
    19, B1.416317.2726.480.0056.2539.4760.530.00128.57MgCl2·6H2O+Tac
    20, C1.340330.450.005.6563.9084.350.0015.65177.01MgCl2·6H2O+AlCl3·6H2O
    211.343628.362.854.9163.8878.527.8913.59176.88MgCl2·6H2O+AlCl3·6H2O
    221.345027.036.053.9762.9572.9616.3210.72169.92MgCl2·6H2O+AlCl3·6H2O
    231.351324.7510.483.1861.5964.4227.298.29160.29MgCl2·6H2O+AlCl3·6H2O
    241.367923.4213.812.4260.3559.0734.826.11152.17MgCl2·6H2O+AlCl3·6H2O
    251.379721.0318.041.6559.2851.6444.314.05145.58MgCl2·6H2O+AlCl3·6H2O
    261.391118.2522.031.1658.5644.0453.162.80141.32MgCl2·6H2O+AlCl3·6H2O
    271.404815.6726.381.0556.9036.3761.202.43132.04MgCl2·6H2O+AlCl3·6H2O
    28, D1.44360.0042.322.3755.310.0094.705.30123.76CaCl2·6H2O+AlCl3·6H2O
    291.44310.8442.292.0654.811.8593.584.57121.29CaCl2·6H2O+AlCl3·6H2O
    301.44461.5842.201.7454.483.4692.713.82119.68CaCl2·6H2O+AlCl3·6H2O
    311.44502.2141.991.5954.214.8391.693.48118.37CaCl2·6H2O+AlCl3·6H2O
    注:Tac为2MgCl2·CaCl2·12H2O。温度、密度的标准不确定度分别为0.2 K、0.0002 g/cm3; w(MgCl2)、w(CaCl2)及w(AlCl3)的相对不确定度分别为0.0021、 0.0030、0.0026。
    下载: 导出CSV
  • [1]

    徐硕, 杨金林, 马少健. 粉煤灰综合利用研究进展[J]. 矿产保护与利用, 2021, 41(3): 104−111. doi: 10.13779/j.cnki.issn1001-0076.2021.03.015

    XU S, YANG J L, MA S J. Research progress in the comprehensive utilization of fly ash[J]. Conservation and utilization of mineral resources, 2021, 41(3): 104−111. doi: 10.13779/j.cnki.issn1001-0076.2021.03.015

    [2]

    梁慧婷. 中国煤炭产业现状分析[J]. 农村经济与科技, 2019, 30(14): 113−114. doi: 10.3969/j.issn.1007-7103.2019.14.075

    LIANG H T. Analysis on the present situation of China's Coal Industry[J]. Rural Economy and Science, 2019, 30(14): 113−114. doi: 10.3969/j.issn.1007-7103.2019.14.075

    [3]

    王建新, 李晶, 赵仕宝, 等. 中国粉煤灰的资源化利用研究进展与前景[J]. 硅酸盐通报, 2018, 37(12): 3834−3841. doi: 10.16552/j.cnki.issn1001-1625.2018.12.020

    WANG J X, LI J, ZHAO S B, et al. Research Progress and Prospect of Resource Utilization of Fly Ash in China[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(12): 3834−3841. doi: 10.16552/j.cnki.issn1001-1625.2018.12.020

    [4]

    李博琦, 谢贤, 吕晋芳, 等. 粉煤灰资源化综合利用研究进展及展望[J]. 矿产保护与利用, 2020, 40(5): 153−160.

    LI B Q, XIE X, LV J F, et al. Progress and prospect of research on comprehensive utilization of fly ash[J]. Conservation and utilization of mineral resources, 2020, 40(5): 153−160.

    [5]

    马家玉. 一种用于循环流化床粉煤灰的处理方法: CN104445212B[P]. 2017-09-12.

    MA J Y. A treatment method of fly Ash in circulating Fluidized bed: CN104445212B[P]. 2017-09-12.

    [6]

    雷锦顺, 李东东, 庄子宇, 等. Li-Na-K-Mg-Ca-Sr-Cl-H2O七元体系多温相平衡性质的热力学模拟研究[J]. 盐湖研究, 2021, 29(3): 17−37.

    LEI J S, LI D D, ZHUANG Z Y, et al. Thermodynamic Modeling of the Phase Equilibrium in the Li-Na-K-Mg-Ca-Sr-Cl-H2O System[J]. Journal of salt lake Resesrch, 2021, 29(3): 17−37.

    [7]

    曾英, 陈佩君, 于旭东. 四元体系Rb+, Cs+, Mg2+ // SO42− - H2O 298.2 K相平衡研究[J]. 化工学报, 2020, 71(8): 3460−3468.

    ZENG Y, CHENG P J, YU X D. Phase equilibria for quaternary system Rb+, Cs+, Mg2+ // SO42− - H2O at 298.2 K[J]. CIESC Journal, 2020, 71(8): 3460−3468.

    [8]

    任永胜, 曹晶, 于冰洁. 313.15 K 四元体系Na+ // SO42−, CO32-, NO3 - H2O固液相平衡研究[J]. 化工学报, 2019, 70(6): 2102−2109.

    RENG Y S, CAO J, YU B J. Solid-liquid equilibria of quaternary system Na+ // SO42-, CO32−, NO3 -H2O at 313.15 K[J]. CIESC Journal, 2019, 70(6): 2102−2109.

    [9]

    WANG L, YU X D, LI M L, et al. Phase equilibrium for the aqueous ternary systems NH4+, Sr2+ (Ca2+) // Cl- - H2O at T=298 K[J]. J. Chem. Eng. Jpn., 2018, 51(7): 551−555. doi: 10.1252/jcej.17we387

    [10]

    YU X D, WANG L, CHEN J, et al. Salt-water phase equilibria in ternary systems K+ (Mg2+), NH4+ // Cl- - H2O at T=273 K[J]. J. Chem. Eng. Data, 2017, 62(4): 1427−1432. doi: 10.1021/acs.jced.6b00981

    [11]

    YU X D, ZENG Y, ZHANG Z X. Solid-liquid metastable phase equilibria in the ternary systems KCl+NH4Cl+H2O and NH4Cl+ MgCl2+H2O at 298.15 K[J]. J. Chem. Eng. Data, 2012, 57(6): 1759−1765. doi: 10.1021/je300124u

    [12]

    张志翔, 曾英, 于旭东. 三元体系MgCl2+NH4Cl+H2O 298.15 K稳定相平衡[J]. 化学工程, 2012, 40(1): 38−42. doi: 10.3969/j.issn.1005-9954.2012.01.010

    ZHANG Z X, ZENG Y, YU X D. Stable phase equilibrium in aqueous ternary system MgCl2+NH4Cl+H2O at 298.15 K[J]. Chemical Engineering(China), 2012, 40(1): 38−42. doi: 10.3969/j.issn.1005-9954.2012.01.010

    [13]

    陈帅, 杨博, 陈念粗, 等. 三元体系NH4Cl+MgCl2+H2O 323.2 K相平衡研究[J]. 无机盐工业, 2022, 54(4): 100−103.

    CHEN S, YANG B, CHEN N C, et al. Study on phase equilibria of ternary system NH4Cl+MgCl2+H2O at 323.2 K[J]. Inorganic Chemicals Industry, 2022, 54(4): 100−103.

    [14]

    DONG O Y, ZENG D W, ZHOU H Y, et al. Phase change materials in the ternary system NH4Cl+CaCl2+H2O[J]. Calphad:Comput. Coupling Phase Diagrams Thermochemics, 2011, 35(3): 269−275. doi: 10.1016/j.calphad.2011.04.002

    [15]

    ZHANG R Z, YANG J M, ZHANG L, et al. The phase equilibriums in the NH4Cl-CaCl2-H2O system at 50 and 75℃ and their Pitzer model representations[J]. Russian Journal of Physical Chemistry A, 2014, 88(13): 2325−2330. doi: 10.1134/S0036024414130214

    [16]

    LI X, YUAN J S, JI Z Y, et al. Phase equilibrium of the ternary system of NH4Cl-CaCl2-H2O at 50℃[J]. Frontiers of Chemical Engineering in China, 2010, 4(1): 75−77. doi: 10.1007/s11705-009-0296-0

    [17]

    ASSARSSON G O. Equilibria in Aqueous Systems Containing K+, Na+, Ca2+, Mg2+ and Cl-. III. The Ternary System CaCl2-MgCl2-H2O[J]. Journal of the American Chemical Society, 1950, 72(4): 1442−1444. doi: 10.1021/ja01160a004

    [18]

    YU X D, ZHENG Q F, WANG L, et al. Solid-liquid phase equilibrium determination and correlation of ternary systems NH4Cl+AlCl3+H2O, MgCl2+AlCl3+H2O and SrCl2+AlCl3+H2O at 298 K[J]. Fluid Phase Equilibria, 2020, 507: 112426. doi: 10.1016/j.fluid.2019.112426

    [19]

    YUAN M X, QIAO X C, YU J G. Phase equilibria of AlCl3+FeCl3+ H2O, AlCl3+CaCl2+H2O, and FeCl3+CaCl2+H2O at 298.15 K[J]. Journal of Chemical & Engineering Data, 2016, 61(5): 1749−1755.

    [20]

    袁梦霞, 乔秀臣. 三元体系AlCl3+CaCl2+H2O, AlCl3+FeCl3+H2O, CaCl2+FeCl3+H2O在35℃的相平衡[J]. 化工学报, 2017, 68(7): 2653−2659.

    YUAN M X, QIAO X C. Phase equilibria of AlCl3+CaCl2+H2O, AlCl3+FeCl3+H2O and CaCl2+FeCl3+H2O ternary systems at 35℃[J]. CIESC Journal, 2017, 68(7): 2653−2659.

    [21]

    YU X D, LIU M, ZHENG Q F, et al. Measurement and correlation of phase equilibria of ammonium, calcium, aluminum, and chloride in aqueous solution at 298.15 K[J]. Journal of Chemical & Engineering Data, 2019, 64(8): 3514−3520.

    [22]

    GAO W C, LI Z B. A practical approach to produce Mg-Al spinel based on the modeling of phase equilibria for NH4Cl-MgCl2-AlCl3-H2O system[J]. AIChE Journal, 2013, 59(6): 1855−1867. doi: 10.1002/aic.13963

    [23]

    中国科学院青海盐湖研究所. 卤水和盐的分析方法(第二版)[M]. 北京: 科学出版社, 1988: 69-72.

    Institute of Qinghai salt-lake of Chinese academy of sciences. analytical methods of brines and salts, (2nd ed)[M]. Chinese Science Press: Beijing, China, 1988: 69-72.

    [24]

    赵世卓, 张煦, 席欢, 等. 铝及铝合金化学分析方法第16部分: 镁含量的测定: GB/T 20975.16—2020 [S]. 北京: 中国标准出版社, 2020.

    ZHAO S Z, ZHANG X, XI H, et al. Methods for chemical analysis of aluminium and aluminium alloys—Part 16: Determination of magnesium content: GB/T 20975.16—2020 [S]. Beijing: Standards Press of China, 2020.

    [25]

    张晓, 谢辉, 席欢, 等. 铝及铝合金化学分析方法第21部分: 钙含量的测定: GB∕T 20975.21—2020 [S]. 北京: 中国标准出版社, 2020.

    ZHANG X, XIE H, XI H, et al. Methods for chemical analysis of aluminium and aluminium alloy—Part 21: Determination of calcium content: B∕T 20975.21—2020 [S]. Beijing: Standards Press of China, 2020.

    [26]

    李跃平, 石磊, 张数朝, 等. 铝及铝合金化学分析方法第25部分: 电感耦合等离子体原子发射光谱: GB/T 20975.25—2008 [S]. 北京: 中国标准出版社, 2008.

    LI Y P, SHI T, ZHANG S C, et al. Methods for chemical analysis of aluminium and aluminium alloys - Part 25: Inductively coupled plasma atomic emission spectrometric method: GB/T 20975.25—2008 [S]. Beijing: Standards Press of China, 2008.

    [27]

    成怀刚, 程芳琴. 水盐体系相分离[M]. 北京: 冶金工业出版社, 2022: 44-45.

    CHENG H G, CHENG F Q. Phase separation of salt-water system [M]. Beijing: Metallurgical Industry Press, 2022: 44-45.

    [28]

    ZENG D W, ZHOU H Y, VOIGT W, Thermodynamic consistency of solubility and vapor pressure of a binary saturated salt + water system: Ⅱ. CaCl2+H2O[J]. Fluid Phase Equilibria, 2007, 253: 1-11.

    [29]

    LI D D, ZENG D W, YIN X, et al. Phase diagrams and thermochemical modeling of salt lake brine systems. Ⅱ. NaCl+H2O, KCl+H2O, MgCl2+H2O and CaCl2+H2O systems[J]. Calphad, 2016, 53: 78−89. doi: 10.1016/j.calphad.2016.03.007

  • 加载中

(5)

(1)

计量
  • 文章访问数:  95
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2022-10-16
刊出日期:  2022-12-26

目录