-
摘要:
为获取粉煤灰含铝溶浸液中铝与共存钙、镁之间的作用规律,采用等温溶解平衡法开展了298.2 K时四元体系MgCl2+CaCl2+AlCl3+H2O相平衡研究,测定了平衡液相组成及平衡液相密度,同时,绘制了该四元体系的干基相图、水图、密度-组成图。研究发现:298.2 K四元体系MgCl2+CaCl2+AlCl3+H2O 稳定相图由2个共饱点、4个结晶区以及5条单变量曲线组成,有复盐溢晶石(2MgCl2·CaCl2·12H2O)生成,为复杂四元体系。4个结晶区分别对应3个单盐结晶区MgCl2·6H2O、CaCl2·6H2O、AlCl3·6H2O和1个复盐结晶区2MgCl2·CaCl2·12H2O,结晶区按照AlCl3·6H2O、MgCl2·6H2O、CaCl2·6H2O、2MgCl2·CaCl2·12H2O顺序依次减小,对应AlCl3·6H2O溶解度最小,2MgCl2·CaCl2·12H2O溶解度最大。
-
关键词:
- 相平衡 /
- 四元体系MgCl2+CaCl2+AlCl3+H2O /
- 溶解度 /
- 溢晶石
Abstract:In order to obtain the interaction law between aluminum and coexisting calcium and magnesium in leaching solution containing aluminum of fly ash, the phase equilibria of the quaternary system MgCl2+CaCl2+AlCl3+H2O was investigated by isothermal dissolution method at 298.2 K. The composition of liquid phase and density were determined. Meanwhile, the phase diagram, water diagram and density vs composition diagram of the quaternary system were drawn, respectively. It was found that the stable phase diagram of the quaternary system MgCl2+CaCl2+AlCl3+H2O consisted of two invariant points, four crystallization regions and five univariate curves, which belonged to a complex system with the double salt of tachyhydrite formed. These four crystallization regions corresponded to single salts MgCl2·6H2O, CaCl2·6H2O, AlCl3·6H2O and double salt 2MgCl2·CaCl2·12H2O, respectively. The crystallization regions decreaseed in the order of AlCl3·6H2O, MgCl2·6H2O, CaCl2·6H2O and 2MgCl2·CaCl2·12H2O, the solubility of AlCl3·6H2O was the smallest and the solubility of 2MgCl2·CaCl2·12H2O is the highest.
-
Key words:
- phase equilibria /
- quaternary system /
- solubility /
- tachyhydrite
-
-
表 1 298.2 K四元体系MgCl2+CaCl2+AlCl3+H2O 平衡溶液的溶解度和密度
Table 1. The solubilities and densities of the quaternary system MgCl2+CaCl2+AlCl3+H2O at 298.2 K
编号 密度/(g·cm−3) 液相组成, w(B) /% 干盐指数 J(B) (g/100g S) 平衡固相 J(MgCl2)+J(CaCl2)+J(AlCl3)=100 w(MgCl2) w(CaCl2) w(AlCl3) w(H2O) J(MgCl2) J(CaCl2) J(AlCl3) J(H2O) 1, A 1.4415 10.20 35.03 0.00 54.77 22.55 77.45 0.00 121.09 CaCl2·6H2O+Tac 2 1.4419 8.99 36.00 0.22 54.78 19.89 79.62 0.50 121.15 CaCl2·6H2O+Tac 3 1.4435 8.39 36.39 0.40 54.82 18.58 80.54 0.89 121.33 CaCl2·6H2O+Tac 4 1.4439 7.42 37.16 0.53 54.89 16.45 82.37 1.18 121.67 CaCl2·6H2O+Tac 5 1.4442 6.65 37.85 0.59 54.91 14.75 83.94 1.31 121.77 CaCl2·6H2O+Tac 6 1.4462 5.61 38.82 0.68 54.90 12.43 86.07 1.50 121.73 CaCl2·6H2O+Tac 7, F1 1.4477 4.03 39.59 1.42 54.96 8.95 87.90 3.15 121.99 CaCl2·6H2O+AlCl3·6H2O+Tac 8 1.4285 5.63 38.21 1.25 54.91 12.48 84.74 2.78 121.76 AlCl3·6H2O+Tac 9 1.4163 8.56 34.71 1.41 55.32 19.16 77.69 3.15 123.84 AlCl3·6H2O+Tac 10 1.4150 9.41 33.95 1.30 55.34 21.06 76.02 2.92 123.9 AlCl3·6H2O+Tac 11 1.4132 11.30 32.46 1.05 55.19 25.22 72.43 2.35 123.16 AlCl3·6H2O+Tac 12 1.4134 12.24 31.58 0.97 55.21 27.33 70.51 2.16 123.26 AlCl3·6H2O+Tac 13, F2 1.4171 13.97 29.20 0.71 56.12 31.84 66.54 1.62 127.92 MgCl2·6H2O+AlCl3·6H2O+Tac 14 1.4172 13.39 29.81 0.65 56.15 30.54 67.98 1.48 128.02 MgCl2·6H2O+Tac 15 1.4170 14.44 28.84 0.54 56.18 32.95 65.81 1.24 128.20 MgCl2·6H2O+Tac 16 1.4167 14.96 28.43 0.40 56.22 34.17 64.93 0.90 128.41 MgCl2·6H2O+Tac 17 1.4162 16.08 27.60 0.10 56.22 36.72 63.04 0.23 128.44 MgCl2·6H2O+Tac 18 1.4158 16.65 27.08 0.04 56.24 38.04 61.88 0.09 128.50 MgCl2·6H2O+Tac 19, B 1.4163 17.27 26.48 0.00 56.25 39.47 60.53 0.00 128.57 MgCl2·6H2O+Tac 20, C 1.3403 30.45 0.00 5.65 63.90 84.35 0.00 15.65 177.01 MgCl2·6H2O+AlCl3·6H2O 21 1.3436 28.36 2.85 4.91 63.88 78.52 7.89 13.59 176.88 MgCl2·6H2O+AlCl3·6H2O 22 1.3450 27.03 6.05 3.97 62.95 72.96 16.32 10.72 169.92 MgCl2·6H2O+AlCl3·6H2O 23 1.3513 24.75 10.48 3.18 61.59 64.42 27.29 8.29 160.29 MgCl2·6H2O+AlCl3·6H2O 24 1.3679 23.42 13.81 2.42 60.35 59.07 34.82 6.11 152.17 MgCl2·6H2O+AlCl3·6H2O 25 1.3797 21.03 18.04 1.65 59.28 51.64 44.31 4.05 145.58 MgCl2·6H2O+AlCl3·6H2O 26 1.3911 18.25 22.03 1.16 58.56 44.04 53.16 2.80 141.32 MgCl2·6H2O+AlCl3·6H2O 27 1.4048 15.67 26.38 1.05 56.90 36.37 61.20 2.43 132.04 MgCl2·6H2O+AlCl3·6H2O 28, D 1.4436 0.00 42.32 2.37 55.31 0.00 94.70 5.30 123.76 CaCl2·6H2O+AlCl3·6H2O 29 1.4431 0.84 42.29 2.06 54.81 1.85 93.58 4.57 121.29 CaCl2·6H2O+AlCl3·6H2O 30 1.4446 1.58 42.20 1.74 54.48 3.46 92.71 3.82 119.68 CaCl2·6H2O+AlCl3·6H2O 31 1.4450 2.21 41.99 1.59 54.21 4.83 91.69 3.48 118.37 CaCl2·6H2O+AlCl3·6H2O 注:Tac为2MgCl2·CaCl2·12H2O。温度、密度的标准不确定度分别为0.2 K、0.0002 g/cm3; w(MgCl2)、w(CaCl2)及w(AlCl3)的相对不确定度分别为0.0021、 0.0030、0.0026。 -
[1] 徐硕, 杨金林, 马少健. 粉煤灰综合利用研究进展[J]. 矿产保护与利用, 2021, 41(3): 104−111. doi: 10.13779/j.cnki.issn1001-0076.2021.03.015
XU S, YANG J L, MA S J. Research progress in the comprehensive utilization of fly ash[J]. Conservation and utilization of mineral resources, 2021, 41(3): 104−111. doi: 10.13779/j.cnki.issn1001-0076.2021.03.015
[2] 梁慧婷. 中国煤炭产业现状分析[J]. 农村经济与科技, 2019, 30(14): 113−114. doi: 10.3969/j.issn.1007-7103.2019.14.075
LIANG H T. Analysis on the present situation of China's Coal Industry[J]. Rural Economy and Science, 2019, 30(14): 113−114. doi: 10.3969/j.issn.1007-7103.2019.14.075
[3] 王建新, 李晶, 赵仕宝, 等. 中国粉煤灰的资源化利用研究进展与前景[J]. 硅酸盐通报, 2018, 37(12): 3834−3841. doi: 10.16552/j.cnki.issn1001-1625.2018.12.020
WANG J X, LI J, ZHAO S B, et al. Research Progress and Prospect of Resource Utilization of Fly Ash in China[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(12): 3834−3841. doi: 10.16552/j.cnki.issn1001-1625.2018.12.020
[4] 李博琦, 谢贤, 吕晋芳, 等. 粉煤灰资源化综合利用研究进展及展望[J]. 矿产保护与利用, 2020, 40(5): 153−160.
LI B Q, XIE X, LV J F, et al. Progress and prospect of research on comprehensive utilization of fly ash[J]. Conservation and utilization of mineral resources, 2020, 40(5): 153−160.
[5] 马家玉. 一种用于循环流化床粉煤灰的处理方法: CN104445212B[P]. 2017-09-12.
MA J Y. A treatment method of fly Ash in circulating Fluidized bed: CN104445212B[P]. 2017-09-12.
[6] 雷锦顺, 李东东, 庄子宇, 等. Li-Na-K-Mg-Ca-Sr-Cl-H2O七元体系多温相平衡性质的热力学模拟研究[J]. 盐湖研究, 2021, 29(3): 17−37.
LEI J S, LI D D, ZHUANG Z Y, et al. Thermodynamic Modeling of the Phase Equilibrium in the Li-Na-K-Mg-Ca-Sr-Cl-H2O System[J]. Journal of salt lake Resesrch, 2021, 29(3): 17−37.
[7] 曾英, 陈佩君, 于旭东. 四元体系Rb+, Cs+, Mg2+ // SO42− - H2O 298.2 K相平衡研究[J]. 化工学报, 2020, 71(8): 3460−3468.
ZENG Y, CHENG P J, YU X D. Phase equilibria for quaternary system Rb+, Cs+, Mg2+ // SO42− - H2O at 298.2 K[J]. CIESC Journal, 2020, 71(8): 3460−3468.
[8] 任永胜, 曹晶, 于冰洁. 313.15 K 四元体系Na+ // SO42−, CO32-, NO3− - H2O固液相平衡研究[J]. 化工学报, 2019, 70(6): 2102−2109.
RENG Y S, CAO J, YU B J. Solid-liquid equilibria of quaternary system Na+ // SO42-, CO32−, NO3− -H2O at 313.15 K[J]. CIESC Journal, 2019, 70(6): 2102−2109.
[9] WANG L, YU X D, LI M L, et al. Phase equilibrium for the aqueous ternary systems NH4+, Sr2+ (Ca2+) // Cl- - H2O at T=298 K[J]. J. Chem. Eng. Jpn., 2018, 51(7): 551−555. doi: 10.1252/jcej.17we387
[10] YU X D, WANG L, CHEN J, et al. Salt-water phase equilibria in ternary systems K+ (Mg2+), NH4+ // Cl- - H2O at T=273 K[J]. J. Chem. Eng. Data, 2017, 62(4): 1427−1432. doi: 10.1021/acs.jced.6b00981
[11] YU X D, ZENG Y, ZHANG Z X. Solid-liquid metastable phase equilibria in the ternary systems KCl+NH4Cl+H2O and NH4Cl+ MgCl2+H2O at 298.15 K[J]. J. Chem. Eng. Data, 2012, 57(6): 1759−1765. doi: 10.1021/je300124u
[12] 张志翔, 曾英, 于旭东. 三元体系MgCl2+NH4Cl+H2O 298.15 K稳定相平衡[J]. 化学工程, 2012, 40(1): 38−42. doi: 10.3969/j.issn.1005-9954.2012.01.010
ZHANG Z X, ZENG Y, YU X D. Stable phase equilibrium in aqueous ternary system MgCl2+NH4Cl+H2O at 298.15 K[J]. Chemical Engineering(China), 2012, 40(1): 38−42. doi: 10.3969/j.issn.1005-9954.2012.01.010
[13] 陈帅, 杨博, 陈念粗, 等. 三元体系NH4Cl+MgCl2+H2O 323.2 K相平衡研究[J]. 无机盐工业, 2022, 54(4): 100−103.
CHEN S, YANG B, CHEN N C, et al. Study on phase equilibria of ternary system NH4Cl+MgCl2+H2O at 323.2 K[J]. Inorganic Chemicals Industry, 2022, 54(4): 100−103.
[14] DONG O Y, ZENG D W, ZHOU H Y, et al. Phase change materials in the ternary system NH4Cl+CaCl2+H2O[J]. Calphad:Comput. Coupling Phase Diagrams Thermochemics, 2011, 35(3): 269−275. doi: 10.1016/j.calphad.2011.04.002
[15] ZHANG R Z, YANG J M, ZHANG L, et al. The phase equilibriums in the NH4Cl-CaCl2-H2O system at 50 and 75℃ and their Pitzer model representations[J]. Russian Journal of Physical Chemistry A, 2014, 88(13): 2325−2330. doi: 10.1134/S0036024414130214
[16] LI X, YUAN J S, JI Z Y, et al. Phase equilibrium of the ternary system of NH4Cl-CaCl2-H2O at 50℃[J]. Frontiers of Chemical Engineering in China, 2010, 4(1): 75−77. doi: 10.1007/s11705-009-0296-0
[17] ASSARSSON G O. Equilibria in Aqueous Systems Containing K+, Na+, Ca2+, Mg2+ and Cl-. III. The Ternary System CaCl2-MgCl2-H2O[J]. Journal of the American Chemical Society, 1950, 72(4): 1442−1444. doi: 10.1021/ja01160a004
[18] YU X D, ZHENG Q F, WANG L, et al. Solid-liquid phase equilibrium determination and correlation of ternary systems NH4Cl+AlCl3+H2O, MgCl2+AlCl3+H2O and SrCl2+AlCl3+H2O at 298 K[J]. Fluid Phase Equilibria, 2020, 507: 112426. doi: 10.1016/j.fluid.2019.112426
[19] YUAN M X, QIAO X C, YU J G. Phase equilibria of AlCl3+FeCl3+ H2O, AlCl3+CaCl2+H2O, and FeCl3+CaCl2+H2O at 298.15 K[J]. Journal of Chemical & Engineering Data, 2016, 61(5): 1749−1755.
[20] 袁梦霞, 乔秀臣. 三元体系AlCl3+CaCl2+H2O, AlCl3+FeCl3+H2O, CaCl2+FeCl3+H2O在35℃的相平衡[J]. 化工学报, 2017, 68(7): 2653−2659.
YUAN M X, QIAO X C. Phase equilibria of AlCl3+CaCl2+H2O, AlCl3+FeCl3+H2O and CaCl2+FeCl3+H2O ternary systems at 35℃[J]. CIESC Journal, 2017, 68(7): 2653−2659.
[21] YU X D, LIU M, ZHENG Q F, et al. Measurement and correlation of phase equilibria of ammonium, calcium, aluminum, and chloride in aqueous solution at 298.15 K[J]. Journal of Chemical & Engineering Data, 2019, 64(8): 3514−3520.
[22] GAO W C, LI Z B. A practical approach to produce Mg-Al spinel based on the modeling of phase equilibria for NH4Cl-MgCl2-AlCl3-H2O system[J]. AIChE Journal, 2013, 59(6): 1855−1867. doi: 10.1002/aic.13963
[23] 中国科学院青海盐湖研究所. 卤水和盐的分析方法(第二版)[M]. 北京: 科学出版社, 1988: 69-72.
Institute of Qinghai salt-lake of Chinese academy of sciences. analytical methods of brines and salts, (2nd ed)[M]. Chinese Science Press: Beijing, China, 1988: 69-72.
[24] 赵世卓, 张煦, 席欢, 等. 铝及铝合金化学分析方法第16部分: 镁含量的测定: GB/T 20975.16—2020 [S]. 北京: 中国标准出版社, 2020.
ZHAO S Z, ZHANG X, XI H, et al. Methods for chemical analysis of aluminium and aluminium alloys—Part 16: Determination of magnesium content: GB/T 20975.16—2020 [S]. Beijing: Standards Press of China, 2020.
[25] 张晓, 谢辉, 席欢, 等. 铝及铝合金化学分析方法第21部分: 钙含量的测定: GB∕T 20975.21—2020 [S]. 北京: 中国标准出版社, 2020.
ZHANG X, XIE H, XI H, et al. Methods for chemical analysis of aluminium and aluminium alloy—Part 21: Determination of calcium content: B∕T 20975.21—2020 [S]. Beijing: Standards Press of China, 2020.
[26] 李跃平, 石磊, 张数朝, 等. 铝及铝合金化学分析方法第25部分: 电感耦合等离子体原子发射光谱: GB/T 20975.25—2008 [S]. 北京: 中国标准出版社, 2008.
LI Y P, SHI T, ZHANG S C, et al. Methods for chemical analysis of aluminium and aluminium alloys - Part 25: Inductively coupled plasma atomic emission spectrometric method: GB/T 20975.25—2008 [S]. Beijing: Standards Press of China, 2008.
[27] 成怀刚, 程芳琴. 水盐体系相分离[M]. 北京: 冶金工业出版社, 2022: 44-45.
CHENG H G, CHENG F Q. Phase separation of salt-water system [M]. Beijing: Metallurgical Industry Press, 2022: 44-45.
[28] ZENG D W, ZHOU H Y, VOIGT W, Thermodynamic consistency of solubility and vapor pressure of a binary saturated salt + water system: Ⅱ. CaCl2+H2O[J]. Fluid Phase Equilibria, 2007, 253: 1-11.
[29] LI D D, ZENG D W, YIN X, et al. Phase diagrams and thermochemical modeling of salt lake brine systems. Ⅱ. NaCl+H2O, KCl+H2O, MgCl2+H2O and CaCl2+H2O systems[J]. Calphad, 2016, 53: 78−89. doi: 10.1016/j.calphad.2016.03.007
-