-
摘要:
煤矸石是煤炭生产和加工过程中产生的固体废弃物,堆积量大。在国家双碳战略的背景下,实现煤矸石的综合利用日益受到重视。分析总结了我国煤矸石的资源量、组成与含铝组分的特点,对从煤矸石中提取氧化铝的工艺进展进行了归纳。主要包括酸法、碱法提取氧化铝的原理、工艺流程和工业化进程,指出了制约其工业化的关键问题,提出加快研究和完善环保高效的煤矸石提取氧化铝技术,以促进煤矸石的高值化利用。
Abstract:Coal gangue is a solid waste produced in the process of coal production and processing, with a large accumulation. Under the background of national dual-carbon strategy, the comprehensive utilization of coal gangue attracts worldwide attention. The characteristics of the resources, composition and aluminum-containing components of gangue in China were analyzed. Furthermore, the technological progress of extracting alumina from coal gangue was summarized including the principle, technological process, and industrialization process of acid and alkali extraction of alumina, and the key problems constraining its industrialization were pointed out. It was proposed to accelerate the research and improve the environmental protection and efficient alumina extraction technology from coal gangue to promote the high-value utilization of coal gangue.
-
Key words:
- coal gangue /
- alumina /
- process flow /
- acid hydrolysis
-
-
表 1 我国北方部分矿区煤矸石的主要化学成分
Table 1. Main chemical compositions and contents of coal gangue in some mining areas of north China
/% 产地 SiO2 Al2O3 Fe2O3 CaO MgO TiO2 Na2O K2O 山西大同 42.28 39.37 0.33 0.58 0.15 0.09 0.36 0.94 山西阳泉 44.78 39.05 0.45 0.66 0.44 0.05 0.10 0.15 山西平朔 41.30 35.98 0.28 0.12 0.21 0.65 0.07 0.07 山西官地 57.19 33.53 3.72 1.55 0.53 0.81 0.81 1.18 山西蒲城 45.20 38.12 0.18 0.12 0.10 0.04 0.22 0.15 内蒙古大青川 46.35 37.62 0.53 0.33 0.09 0.98 0.03 0.08 内蒙古海勃湾 50.72 44.17 1.88 0.71 0.51 / / / 陕西铜川 44.75 37.43 0.99 0.07 0.15 1.43 0.88 0.56 安徽淮北 45.67 37.75 0.28 0.62 0.48 0.29 0.88 0.19 江苏徐州 45.73 38.69 0.47 0.09 0.16 0.45 0.14 0.16 表 2 煤矸石提取氧化铝酸法工艺的比较
Table 2. Comparison of alumina acid extraction process from coal gangue
工艺方法 优点 缺点 硫酸法 耗能低,氧化铝浸取率高,硫酸易得且成本低 对设备防腐性要求高,酸浸时间长,氧化铝提取率不高 盐酸法 酸可循环利用,工艺流程短,产品多元化 对设备防腐性要求高,成本高,酸浸过程会产生有毒气体氯气 硫酸铵法 可循环使用硫酸铵,渣量小,工艺流程短,烧结体系
温度低硫酸铵与煤矸石原料配比较高,氧化铝提取率不高 表 3 煤矸石提取氧化铝碱法工艺的比较
Table 3. Comparison of alkali processes for extracting alumina from coal gangue
工艺方法 优点 缺点 石灰石
烧结法成本低,原料烧结后
不需研磨产生大量硅酸钙废渣,
能耗大碱石灰
烧结法对比石灰石烧结法,
残渣量小能耗大,废渣含碱无法
直接利用亚熔盐法 氧化铝回收率高,
操作简单耗能大,成本高,工业化
难度大 -
[1] CHEN P Y, ZHANG L H, WANG Y H, et al. Environmentally friendly utilization of coal gangue as aggregates for shotcrete used in the construction of coal mine tunnel[J]. Case Studies in Construction Materials, 2021, 15: e00751. doi: 10.1016/j.cscm.2021.e00751
[2] 王红美. 煤矸石综合利用现存问题分析与解决对策研究[J]. 资源节约与环保, 2022(1): 115−117. doi: 10.3969/j.issn.1673-2251.2022.01.032
WANG H M. Analysis of existing problems and countermeasures of comprehensive utilization of coal gangue[J]. Resources Economization & Environmental Protection, 2022(1): 115−117. doi: 10.3969/j.issn.1673-2251.2022.01.032
[3] 杜恒. 煤矸石处置与综合利用研究[J]. 能源与环保, 2022, 44(3): 139−145.
DU H. Research on coal gangue disposal and comprehensive utilization[J]. China Energy and Environmental Protection, 2022, 44(3): 139−145.
[4] 国家发展改革委办公厅. 国家发展改革委办公厅关于加快推进大宗固体废弃物综合利用示范建设的通知[J]. 再生资源与循环经济, 2022, 15(2): 3. doi: 10.3969/j.issn.1674-0912.2022.02.002
Office of the National Development and Reform Commission. Circular of the office of the national development and reform commission on accelerating the demonstration construction of comprehensive utilization of solid waste[J]. Recyclable Resources and Circular Economy, 2022, 15(2): 3. doi: 10.3969/j.issn.1674-0912.2022.02.002
[5] 李鹏, 夏元鹏, 张立魁, 等. 煤矸石综合利用产业政策和发展方向[J]. 陕西地质, 2021, 39(2): 96−101. doi: 10.3969/j.issn.1001-6996.2021.02.013
LI P, XIA Y P, ZHANG L K, et al. Industrial policy and development direction of the comprehensive utilization of coal gangue[J]. Geology of Shaanxi, 2021, 39(2): 96−101. doi: 10.3969/j.issn.1001-6996.2021.02.013
[6] 李振, 雪佳, 朱张磊, 等. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2021, 41(6): 165−178.
LI Z, XUE J, ZHU Z L, et al. Research progress on comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 165−178.
[7] XIE M Z, LIU F Q, ZHAO H L, et al. Mineral phase transformation in coal gangue by high temperature calcination and high-efficiency separation of alumina and silica minerals[J]. Journal of Materials Research and Technology, 2021, 14: 2281−2288. doi: 10.1016/j.jmrt.2021.07.129
[8] GUO Y X, YAN K Z, CUI L, et al. Improved extraction of alumina from coal gangue by surface mechanically grinding modification[J]. Powder Technology, 2016, 302: 33−41. doi: 10.1016/j.powtec.2016.08.034
[9] 赵利军. 非铝土矿氧化铝提取与中国的粉煤灰资源[J]. 神华科技, 2017, 15(4): 88−92. doi: 10.3969/j.issn.1674-8492.2017.04.027
ZHAO L J. Non-bauxite alumina extraction and fly ash resources in China[J]. Shenhua Science and Technology, 2017, 15(4): 88−92. doi: 10.3969/j.issn.1674-8492.2017.04.027
[10] 赵双菊, 张彩朗, 杨小姝. 我国煤矸石综合利用现状综述[J]. 建材发展导向, 2012, 10(6): 47−51.
ZHAO S J, ZHANG C L, YANG X S. Review on comprehensive utilization of coal gangue in China[J]. Development Guide to Building Materials, 2012, 10(6): 47−51.
[11] 仲蕊. 煤矸石资源化综合利用提质空间大[N]. 中国能源报, 2022-06-13(9).
ZHONG R. Large space for quality improvement of coal gangue resource utilization [N]. China Energy News, 2022-06-13 (9).
[12] 邓颖兰, 魏恺颉, 赵迪斐, 等. 我国煤矸石固体废弃物在建筑与环境修复领域的资源化利用[J]. 能源研究与利用, 2021(5): 33−36. doi: 10.3969/j.issn.1001-5523.2021.05.007
DENG Y L, WEI K J, ZHAO D F, et al. Utilization of coal gangue solid waste in construction and environmental restoration in China[J]. Energy Research & Utilization, 2021(5): 33−36. doi: 10.3969/j.issn.1001-5523.2021.05.007
[13] LI J Y, WANG J M. Comprehensive utilization and environmental risks of coal gangue: A review[J]. Journal of Cleaner Production, 2019, 239: 117946. doi: 10.1016/j.jclepro.2019.117946
[14] 司鹏. 煤矸石酸法提铝的活化技术研究[D]. 上海: 华东理工大学, 2011.
SI P. Research on activation technology of extracting aluminum from coal gangue by acid method [D]. Shanghai: East China University of Science And Technology, 2011.
[15] 李化健. 煤矸石的综合利用[M]. 北京: 化学工业出版社, 2010: 9.
LI H J. Comprehensive Utilization of Coal Gangue [M]. Beijing: Chemical Industry Press, 2010: 9.
[16] 贾敏. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2019, 39(4): 46−52.
JIA M. The current situation research on comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources, 2019, 39(4): 46−52.
[17] 曹金钟, 田晓贺, 李玉麟. 我国煤矸石的综合利用技术现状[J]. 现代矿业, 2016, 32(7): 284−285+292. doi: 10.3969/j.issn.1674-6082.2016.07.106
CAO J Z, TIAN X H, LI Y L. Comprehensive utilization technology of coal gangue in China[J]. Modern Mining, 2016, 32(7): 284−285+292. doi: 10.3969/j.issn.1674-6082.2016.07.106
[18] 周海亮. 煤矸石的特性分析及综合利用研究[J]. 山西化工, 2021, 41(6): 221-223.
ZHOU H L. Characteristics analysis and comprehensive utilization of coal gangue [J]. Shanxi Chemical Industry, 201, 41(6): 221-223.
[19] CAO Z, CAO Y D, DONG H J, et al. Effect of calcination condition on the microstructure and pozzolanic activity of calcined coal gangue[J]. International Journal of Mineral Processing, 2016, 146: 23−28. doi: 10.1016/j.minpro.2015.11.008
[20] LI C, WAN J H, SUN H H. Investigation on the activation of coal gangue by a new compound method[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 515−520.
[21] CAO P X, LI G H, JIANG H, et al. Extraction and value-added utilization of alumina from coal fly ash via one-step hydrothermal process followed by carbonation[J]. Journal of Cleaner Production, 2021, 323: 129174. doi: 10.1016/j.jclepro.2021.129174
[22] XIAO J, LI F C, ZHONG Q F, et al. Separation of aluminum and silica from coal gangue by elevated temperature acid leaching for the preparation of alumina and SiC[J]. Hydrometallurgy, 2015, 155: 118−124. doi: 10.1016/j.hydromet.2015.04.018
[23] 李宛霖, 夏举佩, 郑光亚, 等. 煤矸石酸浸提取多金属过程[J]. 化工科技, 2019, 27(3): 41−45.
LI W L, XIA J P, ZHENG G Y, et al. Extraction of polymetallics from coal gangue by acid leaching[J]. Science & Technology In Chemical Industry, 2019, 27(3): 41−45.
[24] MATJIE R H, BUNT J R, HEERDEN J H P V. Extraction of alumina from coal fly ash generated from a selected low rank bituminous South African coal[J]. Minerals Engineering, 2005, 18(3): 299−310. doi: 10.1016/j.mineng.2004.06.013
[25] 夏举佩, 刘成龙, 杨荣, 等. 高铁低铝煤矸石酸法提取铝、铁研究[J]. 安全与环境学报, 2015, 15(03): 248−251.
XIA J P, LIU C L, YANG R, et al. A new approach to acid leaching separation of aluminum and iron from the iron-abundant and aluminum-low coal gangue[J]. Journal of Safety and Environment, 2015, 15(03): 248−251.
[26] 谷立轩, 夏举佩, 张召述. 影响酸法提取煤矸石中氧化铝主要因素的试验研究[J]. 安全与环境学报, 2012, 12(2): 88−91. doi: 10.3969/j.issn.1009-6094.2012.02.021
GU L X, XIA J P, ZHANG Z S. Affecting factors on the alumina extracting from the coal gangue with sulfuric acid[J]. Journal of Safety and Environment, 2012, 12(2): 88−91. doi: 10.3969/j.issn.1009-6094.2012.02.021
[27] 刘成龙, 夏举佩, 张永波. 酸浸提取煤矸石中氧化铝工艺优化及其动力学[J]. 过程工程学报, 2015, 15(4): 579−583. doi: 10.12034/j.issn.1009-606X.215181
LIU C L, XIA J P, ZHANG Y B. Optimization and kinetics on extracting of alumina from coal gangue by acid leaching[J]. The Chinese Journal of Process Engineering, 2015, 15(4): 579−583. doi: 10.12034/j.issn.1009-606X.215181
[28] 蒋开喜. 加压湿法冶金[M]. 北京: 高等教育出版社, 2016: 58.
JIANG K X. Pressure hydrometallurgy[M]. Beijing: Higher Education Press, 2016: 58.
[29] 李浩林, 夏举佩, 曾德恢, 等. 加压酸浸煤矸石中氧化铝工艺及动力学研究[J]. 煤炭转化, 2020, 43(2): 89−96.
LI H L, XIA J P, ZENG D H, et al. Dynamics analysis and technical of leaching alumina from coal gangue by pressured acid leaching process[J]. Coal Conversion, 2020, 43(2): 89−96.
[30] 朱明燕, 金会心, 聂登攀, 等. 煤矸石氟盐烧结法铝硅分离及制备白炭黑的实验研究[J]. 应用化工, 2019, 48(10): 2407−2411. doi: 10.3969/j.issn.1671-3206.2019.10.032
ZHU M Y, JIN H X, NIE D P, et al. The study of Sintering coal gangue villiaumite to separate aluminum, silicon and preparation of silica[J]. Applied Chemical Industry, 2019, 48(10): 2407−2411. doi: 10.3969/j.issn.1671-3206.2019.10.032
[31] 钞晓光. 粉煤灰酸法提取氧化铝工艺研究现状[J]. 化工管理, 2017(15): 75−77. doi: 10.3969/j.issn.1008-4800.2017.15.048
CHAO X G. Research status of acid extraction of alumina from fly ash[J]. Chemical Enterprise Management, 2017(15): 75−77. doi: 10.3969/j.issn.1008-4800.2017.15.048
[32] 崔莉, 王东飞, 张俊才, 等. 煅烧温度和添加剂对提高煤矸石中氧化铝溶出率的实验研究[J]. 环境工程学报, 2009, 3(3): 539−543.
CUI L, WANG D F, ZHANG J C, et al. Study on the effect of calcine temperature and additives on alumina oxide extraction from coal gangue[J]. Chinese Journal of Environmental Engineering, 2009, 3(3): 539−543.
[33] 李浩林. 煤矸石加压酸浸提取氧化铝工艺及动力学研究[D]. 昆明: 昆明理工大学, 2021.
LI H L. dynamics analysis and technical of leaching alumina from coal gangue by pressured acid leaching process[D]. Kunming: Kunming University of Science and Technology, 2021.
[34] YANG Q C, ZHANG F, DENG X J, et al. Extraction of alumina from alumina rich coal gangue by a hydro-chemical process[J]. Royal Society open science, 2020, 7(4): 192132. doi: 10.1098/rsos.192132
[35] 张宇娟, 张永锋, 孙俊民, 等. 高铝粉煤灰提取氧化铝工艺研究进展[J]. 现代化工, 2022, 42(1): 66−70. doi: 10.16606/j.cnki.issn0253-4320.2022.01.014
ZHANG Y J, ZHANG Y F, SUN J M, et al. Research progress on extraction of alumina from high-aluminum fly ash[J]. Modern chemical industry, 2022, 42(1): 66−70. doi: 10.16606/j.cnki.issn0253-4320.2022.01.014
[36] 燕可洲, 郭彦霞, 张俊才, 等. 潞安矿区煤矸石用于氧化铝提取的研究[J]. 煤炭转化, 2014, 37(4): 85−90. doi: 10.3969/j.issn.1004-4248.2014.04.019
YAN K Z, GUO Y X, ZHANG J C, et al. Study on alumina extraction from coal gangue in Lu’An mining area[J]. Coal Conversion, 2014, 37(4): 85−90. doi: 10.3969/j.issn.1004-4248.2014.04.019
[37] 李景阳, 郭宇, 吕兴旺, 等. 从阜新地区煤矸石中提取氧化铝的工艺研究[J]. 天津化工, 2017, 31(3): 16−19. doi: 10.3969/j.issn.1008-1267.2017.03.005
LI J Y, GUO Y, LV X W, et al. Extraction of alumina from coal gangue in Fuxin area by acid leaching method[J]. Tianjin Chemical Industry, 2017, 31(3): 16−19. doi: 10.3969/j.issn.1008-1267.2017.03.005
[38] HAN L N, REN W G, WANG B, et al. Extraction of SiO2 and Al2O3 from coal gangue activated by supercritical water[J]. Fuel, 2019, 253: 1184−1192. doi: 10.1016/j.fuel.2019.05.118
[39] 陈东, 曹坤. 准格尔矿区煤矸石综合利用新途径[J]. 中国煤炭, 2017, 43(10): 132−136. doi: 10.3969/j.issn.1006-530X.2017.10.026
CHEN D, CAO K. New method for coal gangue comprehensive utilization in Jungar mining area[J]. China Coal, 2017, 43(10): 132−136. doi: 10.3969/j.issn.1006-530X.2017.10.026
[40] 郭昭华. 粉煤灰“一步酸溶法”提取氧化铝工艺技术及工业化发展研究[J]. 煤炭工程, 2015, 47(7): 5−8. doi: 10.11799/ce201507002
GUO Z H. Study and Industrial Development of One-Step Acid dissolution Technology for Alumina Extracting from Fly Ash[J]. Coal Engineering, 2015, 47(7): 5−8. doi: 10.11799/ce201507002
[41] WU Y S, XU P, CHEN J, et al. Effect of Temperature on Phase and Alumina Extraction Efficiency of the Product from Sintering Coal Fly Ash with Ammonium Sulfate[J]. Chinese Journal of Chemical Engineering, 2014, 22(11/12): 1363−1367.
[42] DING J, MA S H, XIE Z L, et al. Research and industrialization progress of recovering alumina from fly ash: A concise review[J]. Waste Management, 2017, 60: 375−387. doi: 10.1016/j.wasman.2016.06.009
[43] 隋丽丽, 翟玉春. 硫酸铵焙烧粉煤灰提氧化铝[J]. 矿冶, 2016, 25(4): 33−35+52. doi: 10.3969/j.issn.1005-7854.2016.04.008
SUI L L, ZHAI Y C. Extracting aluminum oxide from roasting fly ash by ammonium sulfate[J]. Mining and Metallurgy, 2016, 25(4): 33−35+52. doi: 10.3969/j.issn.1005-7854.2016.04.008
[44] 薛茹君, 吴玉程, 陈晓玲. 煤系高岭土制取高纯氧化铝−萃取除铁[J]. 矿物学报, 2009, 29(2): 164−168. doi: 10.3321/j.issn:1000-4734.2009.02.005
XUE R J, WU Y C, CHEN X L. Preparation of ultra-pure and ultra-fine alumina from kaolinite in coal measures —— extraction separation of FeⅢ[J]. Acta Mineralogica Sinica, 2009, 29(2): 164−168. doi: 10.3321/j.issn:1000-4734.2009.02.005
[45] 郑光亚. 煤矸石酸溶物制备氧化铝工艺及机理研究[D]. 云南: 昆明理工大学, 2020.
ZHENG G Y. Preparation process and mechanism of alumina from coal gangue acid solution [D]. Yunnan: Kunming University of Science and Technology, 2020.
[46] 曹雨桐, 马北越, 付高峰. 煤矸石高值化利用研究进展[J]. 耐火与石灰, 2021, 46(2): 35−39. doi: 10.16425/j.cnki.1673-7792.2021.02.009
CAO Y T, MA B Y, FU G F. Research progress of high value utilization of coal gangue[J]. Refractories & Lime, 2021, 46(2): 35−39. doi: 10.16425/j.cnki.1673-7792.2021.02.009
[47] 张维涛, 陈延信, 赵博, 等. 富铝煤矸石低钙烧结法提铝的实验研究[J]. 煤炭转化, 2022, 45(3): 61−70.
ZHANG W T, CHEN Y X, ZHAO B, et al. Experimental study on extracting from aluminum-rich coal gangue by low-calcium sintering[J]. Coal Conversion, 2022, 45(3): 61−70.
[48] 任根宽, 朱登磊, 谭超. 从煤矸石中提取活性氧化铝的清洁化工艺[J]. 安全与环境学报, 2014, 14(1): 160−163. doi: 10.13637/j.issn.1009-6094.2014.01.038
REN G K, ZHU D L, TAN C. Renovation on the cleansing technology in leaching of active alumina from the coal gangue[J]. Journal of Safety and Environment, 2014, 14(1): 160−163. doi: 10.13637/j.issn.1009-6094.2014.01.038
[49] 张佼阳, 童军武, 孙培梅. 从煤矸石中提取氧化铝熟料烧成过程工艺研究[J]. 湿法冶金, 2011, 30(4): 316−319. doi: 10.3969/j.issn.1009-2617.2011.04.014
ZHANG J Y, TONG J W, SUN P M. Study on sintering process of raw materials in extracting alumina from coal gangue[J]. Hydrometallurgy of China, 2011, 30(4): 316−319. doi: 10.3969/j.issn.1009-2617.2011.04.014
[50] 朱科明, 张馨圆, 王乐, 等. 粉煤灰碱法提取氧化铝工艺研究进展[J]. 轻金属, 2019(9): 4−8. doi: 10.13662/j.cnki.qjs.2019.09.002
ZHU K M, ZHANG X Y, WANG L, et al. Progress in alkali extraction of alumina from fly ash[J]. Light Metals, 2019(9): 4−8. doi: 10.13662/j.cnki.qjs.2019.09.002
[51] 耿学文, 马鸿文, 苏双青, 等. 高铝煤矸石脱硅滤饼碱石灰烧结法制备氢氧化铝的实验研究[J]. 矿物岩石地球化学通报, 2012, 31(6): 635−639. doi: 10.3969/j.issn.1007-2802.2012.06.011
GENG X W, MA H W, SU S Q, et al. The preparation of aluminum hydroxide from high-alumina gangue desilication residues based on soda lime sintering method[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(6): 635−639. doi: 10.3969/j.issn.1007-2802.2012.06.011
[52] 伍泽广. 煤系高岭土制备多品种氧化铝和硅质无机填料研究[D]. 北京: 中国矿业大学, 2012.
WU Z G. Study on preparation of various alumina and siliceous inorganic fillers from coal kaolin[D]. Beijing: China University of Mining and Technology, 2012.
[53] YANG Q C, MA S H, ZHENG S L, et al. Recovery of alumina from circulating fluidized bed combustion Al-rich fly ash using mild hydrochemical process[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(4): 1187−1195. doi: 10.1016/S1003-6326(14)63178-2
[54] 杨权成. 煤矸石提取氧化铝及其制备功能材料研究[D]. 北京: 中国矿业大学, 2020.
YANG Q C. Extraction of alumina from coal gangue and preparation of functional materials[D]. Beijing: China University of Mining and Technology, 2020.
[55] DING J, MA S H, ZHENG S L, et al. Study of extracting alumina from high-alumina PC fly ash by a hydro-chemical process[J]. Hydrometallurgy, 2016, 161: 58−64. doi: 10.1016/j.hydromet.2016.01.025
-