煤矸石还原酸性废水中Cr(Ⅵ)的机理分析

黎艳, 窦亚芳, 肖文理, 柴东, 艾则提艾力·麦麦提. 煤矸石还原酸性废水中Cr(Ⅵ)的机理分析[J]. 矿产保护与利用, 2022, 42(6): 30-35. doi: 10.13779/j.cnki.issn1001-0076.2022.06.004
引用本文: 黎艳, 窦亚芳, 肖文理, 柴东, 艾则提艾力·麦麦提. 煤矸石还原酸性废水中Cr(Ⅵ)的机理分析[J]. 矿产保护与利用, 2022, 42(6): 30-35. doi: 10.13779/j.cnki.issn1001-0076.2022.06.004
LI Yan, DOU Yafang, XIAO Wenli, CHAI Dong, Hazritiali Memet. Mechanism Analysis of Cr(Ⅵ) Reduction by Coal Gangue in Acidic Wastewater[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 30-35. doi: 10.13779/j.cnki.issn1001-0076.2022.06.004
Citation: LI Yan, DOU Yafang, XIAO Wenli, CHAI Dong, Hazritiali Memet. Mechanism Analysis of Cr(Ⅵ) Reduction by Coal Gangue in Acidic Wastewater[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 30-35. doi: 10.13779/j.cnki.issn1001-0076.2022.06.004

煤矸石还原酸性废水中Cr(Ⅵ)的机理分析

  • 基金项目: 新疆维吾尔自治区高校科研计划项目(XJEDU2019Y059);大学生创新训练项目(202210994018)
详细信息
    作者简介: 黎艳,女,四川南充人,博士,副教授,主要从事固废的综合利用研究,E-mail:liyan19809743@163.com
  • 中图分类号: TD849+.5

Mechanism Analysis of Cr(Ⅵ) Reduction by Coal Gangue in Acidic Wastewater

  • 通过试验探讨了煤矸石与Cr(Ⅵ)反应的动力学行为以及作用机制。研究表明,煤矸石还原Cr(Ⅵ)的过程分为两个阶段:第一阶段为煤矸石中的菱铁矿和黄铁矿与氢离子作用生成Fe(Ⅱ)、S、H2S,由于该阶段为固—液反应,反应速率与传质速率密切相关,在搅拌条件下反应速率常数为0.169 mg/(L·min),远大于静态条件下的反应速率常数0.048 mg/(L·min);第二阶段为Cr(Ⅵ)的还原,通过元素分析,结合红外和XRD表征,说明菱铁矿和黄铁矿中的铁和硫元素最终被Cr(Ⅵ)氧化成Fe(Ⅲ)和硫酸根,而Cr(Ⅵ)被还原成低毒性的Cr(Ⅲ)。菱铁矿和黄铁矿均是煤矸石常见成分,根据上述研究和分析,将煤矸石用于含Cr(Ⅵ)废水的处理,不仅提高了煤矸石的综合利用效率,同时为处理含Cr(Ⅵ)废水提供了低廉高效的方法。

  • 加载中
  • 图 1  动力学试验拟合曲线(A-E浓度依次为40、60、80、100、100 mg/L,A:始终搅拌,B-D:0-210 min搅拌后静置, E:始终静置)

    Figure 1. 

    图 2  处理Cr(Ⅵ)前后煤矸石的XRD图谱

    Figure 2. 

    图 3  处理Cr(Ⅵ)前后煤矸石的红外谱图

    Figure 3. 

    表 1  煤矸石主要成分及含量

    Table 1.  Main composition and content of coal gangue /%

    成分SiO2Al2O3Fe2O3MgOCaOSO3TiO2烧失量
    含量47.4013.259.911.631.792.071.6521.93
    下载: 导出CSV

    表 2  动力学试验拟合参数

    Table 2.  Kinetic experiment fitting parameters

    分组k/ (mg·L−1·min−1)c0/(mg·L−1)拟合方程R2
    搅拌静置搅拌静置搅拌静置
    A−0.16938.58c=38.58−0.169t0.990
    B−0.17656.00c=56.00−0.176t0.939
    C−0.168−0.03378.71c=78.71−0.168tc=78.71−0.033t0.9840.997
    D−0.163−0.04298.34c=98.34−0.163tc=98.34−0.042t0.9560.997
    E−0.04895.86c=95.86−0.048t0.989
    下载: 导出CSV

    表 3  不同条件下金属离子的浓度

    Table 3.  Concentration of metal ions under different conditions /( mg·L−1)

    元素Cr(Ⅵ)Fe(Ⅱ)CrFeCaMg
    NC38.820.07168.3898.2654.08
    AC0.674.3340.14168.7997.9454.62
    下载: 导出CSV
  • [1]

    王雪, 黎艳, 王晓军, 等. Fe3+、Fe2+对白云石、高岭土、石英浮选行为的影响研究[J]. 冶金分析, 2017, 37(2): 59−64.

    WANG X, LI Y, WANG X J, et al. Study on influence of Fe3+ and Fe2+ on flotation of dolomite, kaolin and quartz[J]. Metallurgical Analysis, 2017, 37(2): 59−64.

    [2]

    李振, 雪佳, 朱张磊, 等. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2021, 41(6): 165−178.

    LI Z, XUE J, ZHU Z L, et al. Research progress on comprehensive utilization of coal gangue[J]. Conservation and utilization of mineral resources, 2021, 41(6): 165−178.

    [3]

    MENG F R, YU J L. TAHMASEB A. Pyrolysis and combustion behavior of coal gangue in O2/CO2 and O2/N2 mixtures using thermogravimetric analysis and a drop tube furnace[J]. Energy & Fuels, 2013, 27(6): 2923−2932.

    [4]

    ZHOU C C, LIU G J, YAN Z C, et al. Transformation behavior of mineral composition and trace elements during coal gangue combustion[J]. Fuel, 2012, 97: 644−650. doi: 10.1016/j.fuel.2012.02.027

    [5]

    王雪, 陈平, 王晓军, 等. 油酸钠体系下白云石、高岭土、石英的浮选性能[J]. 非金属矿, 2016, 39(4): 80−83. doi: 10.3969/j.issn.1000-8098.2016.04.024

    WANG X, CHEN P, WANG X J, et al. Floatability of dolomite, kaolin and quartz in system of sodium oleate[J]. Non-Metallic Mines, 2016, 39(4): 80−83. doi: 10.3969/j.issn.1000-8098.2016.04.024

    [6]

    MISZ-KENNAN M, FABIASKA M. Thermal transformation of organic matter in coal waste from Rymer Cones (Upper Silesian Coal Basin, Poland)[J]. International Journal of Coal Geology, 2010, 81(4): 343−358. doi: 10.1016/j.coal.2009.08.009

    [7]

    许泽胜, 陈佳蕊, 王森彪, 等. 煤矸石分级分质加工与利用的研究[J]. 中国煤炭, 2021, 47(11): 61−68. doi: 10.3969/j.issn.1006-530X.2021.11.010

    XUE Z S, CHEN J R, WANG S B, et al. Study on the grading and quality-separating processing and utilization of coal gangue[J]. China Coal, 2021, 47(11): 61−68. doi: 10.3969/j.issn.1006-530X.2021.11.010

    [8]

    MEI Z, DOU Y W, ZHANG Y Z, et al. Effects of the variety and content of coal gangue coarse aggregate on the mechanical properties of concrete[J]. Construction and Building Materials, 2019, 220(30): 386−395.

    [9]

    刘成龙, 许爱华, 夏举佩, 等. 煤矸石浸渣制备白炭黑工艺优化及性能分析[J]. 精细化工, 2019, 36(11): 2177−2184. doi: 10.13550/j.jxhg.20190348

    LIU C L, XU A H, XIA J P, et al. Process optimization and performance analysis for preparation of silica from coal gangue leaching residue[J]. Fine Chemicals, 2019, 36(11): 2177−2184. doi: 10.13550/j.jxhg.20190348

    [10]

    吴红, 卢香宇, 罗忠竞, 等. 活化煤矸石免烧砖制备及机理分析[J]. 非金属矿, 2018, 41(1): 30−33. doi: 10.3969/j.issn.1000-8098.2018.01.010

    WU H, LU X Y, LUO Z J, et al. Preparation and mechanism analysis of activated coal gangue unburned bricks[J]. Non-Metallic Mines, 2018, 41(1): 30−33. doi: 10.3969/j.issn.1000-8098.2018.01.010

    [11]

    XIAO J, LI F, ZHONG Q, et al. Separation of aluminum and silica from coal gangue by elevated temperature acid leaching for the preparation of alumina and SiC[J]. Hydrometallurgy, 2015, 155: 118−124. doi: 10.1016/j.hydromet.2015.04.018

    [12]

    田爱杰, 田爱民, 孔令靓, 等. 正交试验法研究煤矸石中镓的提取工艺条件[J]. 中国锰业, 2016, 34(6): 96−99.

    TIAN A J, TIAN A M, KONG L L, et al. Production skill of gallium in gangue of orthogonal experiment[J]. China’ Manganese Industry, 2016, 34(6): 96−99.

    [13]

    SHANG Z, ZHANG L W, ZHAO X, et al. Removal of Pb(Ⅱ), Cd(Ⅱ) and Hg(Ⅱ) from aqueous solution by mercapto-modified coal gangue[J]. Journal of Environmental Management, 2019, 231(1): 391−396.

    [14]

    段锋, 马爱琼, 肖国庆, 等. 煤矸石在高温材料中的应用研究进展[J]. 硅酸盐通报, 2013, 32(9): 1811−1816.

    DUAN F, MA A Q, XIAO G Q, et al. Study progress on application of coal gangue in high temperature materials[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(9): 1811−1816.

    [15]

    LI C, WAN J, SUN H, et al. Investigation on the activation of coal gangue by a new compound method[J]. Journal of Hazardous Materials, 2010, 179(1-3): 515−520. doi: 10.1016/j.jhazmat.2010.03.033

    [16]

    李慧婉, 和东芹, 谢娟, 等. SnO2-ZnO/煤矸石复合物光催化降解有机磷农药的性能研究[J]. 矿产综合利用, 2020(4): 185−190. doi: 10.3969/j.issn.1000-6532.2020.04.032

    LI H W, HE D Q, XIE J, et al. Study on the Photocatalytic Degradation of Organophosphorus Pesticides by SnO2-ZnO/coal gangue composite[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 185−190. doi: 10.3969/j.issn.1000-6532.2020.04.032

    [17]

    MOHAMMADI R, AZADMEHR A, MAGHSOUDI A. Fabrication of the alginate-combusted coal gangue composite for simultaneous and effective adsorption of Zn(Ⅱ) and Mn(Ⅱ)[J]. Journal of Environmental Chemical Engineering, 2019, 7(6): 103494. doi: 10.1016/j.jece.2019.103494

    [18]

    LI H, FENG Z, JING W, et al. Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption performance[J]. Chemical Engineering Journal, 2020, 390(15): 124513.

    [19]

    BU N, LIU X, SONG S, et al. Synthesis of NaY zeolite from coal gangue and its characterization for lead removal from aqueous solution[J]. Advanced Powder Technology, 2020, 31(7): 2699−2710. doi: 10.1016/j.apt.2020.04.035

    [20]

    RAVIKUMAR K V G, KUMAR D, KUMAR G, et al. Enhanced Cr(Ⅵ) removal by nanozerovalent iron-immobilized alginate beads in the presence of a biofilm in a continuous-flow reactor[J]. Industrial & Engineering Chemistry Research, 2016, 55(20): 5973−5982.

    [21]

    PAKZADEH B, BATISTA J R. Chromium removal from ion-exchange waste brines with calcium polysulfide[J]. Water Research, 2011, 45(10): 3055−3064. doi: 10.1016/j.watres.2011.03.006

    [22]

    AGRAWAL A, KUMAR V, PANDEY B D. Remediation opinions for the treatment of electroplating and leather tanning effluent containing chromium–a review[J]. Mineral Processing & Extractive Metallurgy Review, 2006, 27: 99−130.

    [23]

    PRABHAKARAN S K, VIJAYARAGHAVAN K, BALASUBRAMANIAN R. Removal of Cr(Ⅵ) ions by spent tea and coffee dusts: reduction to Cr(Ⅲ) and biosorption[J]. Industrial & Engineering Chemistry Research, 2009, 48(4): 2113−2117.

    [24]

    KUMAR A, JENA H M. Adsorption of Cr(Ⅵ) from aqueous solution by prepared high surface area activated carbon from Fox nutshell by chemical activation with H3PO4[J]. Journal of Environmental Chemical Engineering, 2017, 5(2): 2032−2041.

    [25]

    AMINULLSLAM M, ANGOVE M J, MORTON D W. Recent innovative research on chromium (Ⅵ) adsorption mechanism[J]. Environmental Nanotechnology, Monitoring & Management, 2019, 12: 100267.

    [26]

    DABROWSKI A, HUBICKI Z, PODKOSCIELNY P, et al. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method[J]. Chemosphere, 2004, 56(2): 91−106.

    [27]

    JACHULA J, HUBICKI Z. Removal of Cr(Ⅵ) and As(Ⅴ) ions from aqueous solutions by polyacrylate and polystyrene anion exchange resins[J]. Applied Water Science, 2013, 3: 653−664.

    [28]

    MA L, CHEN N, FENG C, et al. Enhanced Cr(Ⅵ) reduction in biocathode microbial electrolysis cell Enhanced Cr(Ⅵ) reduction in biocathode microbial electrolysis cell using Fenton-derived ferric sludge[J]. Water Research, 2022, 212(1): 118114.

    [29]

    JIANG B, GONG Y, GAO J, et al. The reduction of Cr(Ⅵ) to Cr(Ⅲ) mediated by environmentally relevant carboxylic acids: state-of-the-art and perspectives[J]. Journal of Hazardous Materials, 2019, 365(5): 205−226.

    [30]

    LI Y, WANG X J. Chromium (Ⅵ) reduction in aqueous solutions using coal gangue[J]. Desalination and Water Treatment, 2018, 113: 102−108.

    [31]

    李惠云, 郭金福. 热处理温度对煤矸石结构及吸附Cr6+性能的影响[J]. 非金属矿, 2005, 28(4): 45−47. doi: 10.3969/j.issn.1000-8098.2005.04.017

    LI H Y, GUO J F. Effects of thermal treatment temperature on coal gangue structure and Cr6+adsorbability[J]. Non-Metallic Mines, 2005, 28(4): 45−47. doi: 10.3969/j.issn.1000-8098.2005.04.017

    [32]

    秦巧燕, 贾陈忠, 周学丽. 活化煤矸石对含铬废水的吸附处理研究[J]. 工业安全与环保, 2007(6): 23−25. doi: 10.3969/j.issn.1001-425X.2007.06.008

    QIN Q Y, JIA C Z, ZHOU X L. Research on absorption treatment of wastewater containing chromium by active coal gangue[J]. Industrial Safety and Environmental Protection, 2007(6): 23−25. doi: 10.3969/j.issn.1001-425X.2007.06.008

    [33]

    南京大学《无机及分析化学》编写组. 无机及分析化学[M]. 北京: 高等教育出版社, 2006: 58-59.

    Compilation Group of Inorganic and Analytical Chemistry, Nanjing University. Inorganic and Analytical Chemistry[M]. Beijing: Higher Education Press, 2006: 58-59.

  • 加载中

(3)

(3)

计量
  • 文章访问数:  77
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2022-08-05
刊出日期:  2022-12-26

目录