Mechanism Analysis of Cr(Ⅵ) Reduction by Coal Gangue in Acidic Wastewater
-
摘要:
通过试验探讨了煤矸石与Cr(Ⅵ)反应的动力学行为以及作用机制。研究表明,煤矸石还原Cr(Ⅵ)的过程分为两个阶段:第一阶段为煤矸石中的菱铁矿和黄铁矿与氢离子作用生成Fe(Ⅱ)、S、H2S,由于该阶段为固—液反应,反应速率与传质速率密切相关,在搅拌条件下反应速率常数为0.169 mg/(L·min),远大于静态条件下的反应速率常数0.048 mg/(L·min);第二阶段为Cr(Ⅵ)的还原,通过元素分析,结合红外和XRD表征,说明菱铁矿和黄铁矿中的铁和硫元素最终被Cr(Ⅵ)氧化成Fe(Ⅲ)和硫酸根,而Cr(Ⅵ)被还原成低毒性的Cr(Ⅲ)。菱铁矿和黄铁矿均是煤矸石常见成分,根据上述研究和分析,将煤矸石用于含Cr(Ⅵ)废水的处理,不仅提高了煤矸石的综合利用效率,同时为处理含Cr(Ⅵ)废水提供了低廉高效的方法。
Abstract:The kinetic behavior and mechanism of the reaction between coal gangue and Cr(Ⅵ) were investigated. The study showed that the reduction process of Cr(Ⅵ) by coal gangue could be divided into two stages. During the initial stage, siderite and pyrite in coal gangue reacted with hydrogen ions to generate Fe(Ⅱ), S and H2S. Since it was a solid-liquid reaction, the reaction rate was closely related to the mass transfer rate. The reaction rate constant obtained under stirring condition was 0.169 mg/(L·min), much higher than 0.048 mg/(L·min) got under static conditions. The second stage was the reduction of Cr(Ⅵ). The results got from elemental analysis, infrared and XRD characterization showed that the iron and sulfur elements in siderite and pyrite were oxidized to Fe(Ⅲ) and SO42−, and Cr(Ⅵ) was reduced to Cr(Ⅲ) which is low toxicity . Siderite and pyrite are common components in coal gangue. According to the above research and analysis, the use of coal gangue for treating wastewater containing Cr(Ⅵ) not only improves the utilization efficiency of coal gangue, but also provides a cost-effective and efficient method for the treatment of wastewater containing Cr(Ⅵ).
-
Key words:
- coal gangue /
- Cr(Ⅵ) /
- mechanism analysis
-
-
表 1 煤矸石主要成分及含量
Table 1. Main composition and content of coal gangue
/% 成分 SiO2 Al2O3 Fe2O3 MgO CaO SO3 TiO2 烧失量 含量 47.40 13.25 9.91 1.63 1.79 2.07 1.65 21.93 表 2 动力学试验拟合参数
Table 2. Kinetic experiment fitting parameters
分组 k/ (mg·L−1·min−1) c0/(mg·L−1) 拟合方程 R2 搅拌 静置 搅拌 静置 搅拌 静置 A −0.169 − 38.58 c=38.58−0.169t − 0.990 − B −0.176 − 56.00 c=56.00−0.176t − 0.939 − C −0.168 −0.033 78.71 c=78.71−0.168t c=78.71−0.033t 0.984 0.997 D −0.163 −0.042 98.34 c=98.34−0.163t c=98.34−0.042t 0.956 0.997 E − −0.048 95.86 − c=95.86−0.048t − 0.989 表 3 不同条件下金属离子的浓度
Table 3. Concentration of metal ions under different conditions
/( mg·L−1) 元素 Cr(Ⅵ) Fe(Ⅱ) Cr Fe Ca Mg NC − 38.82 0.07 168.38 98.26 54.08 AC 0.67 4.33 40.14 168.79 97.94 54.62 -
[1] 王雪, 黎艳, 王晓军, 等. Fe3+、Fe2+对白云石、高岭土、石英浮选行为的影响研究[J]. 冶金分析, 2017, 37(2): 59−64.
WANG X, LI Y, WANG X J, et al. Study on influence of Fe3+ and Fe2+ on flotation of dolomite, kaolin and quartz[J]. Metallurgical Analysis, 2017, 37(2): 59−64.
[2] 李振, 雪佳, 朱张磊, 等. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2021, 41(6): 165−178.
LI Z, XUE J, ZHU Z L, et al. Research progress on comprehensive utilization of coal gangue[J]. Conservation and utilization of mineral resources, 2021, 41(6): 165−178.
[3] MENG F R, YU J L. TAHMASEB A. Pyrolysis and combustion behavior of coal gangue in O2/CO2 and O2/N2 mixtures using thermogravimetric analysis and a drop tube furnace[J]. Energy & Fuels, 2013, 27(6): 2923−2932.
[4] ZHOU C C, LIU G J, YAN Z C, et al. Transformation behavior of mineral composition and trace elements during coal gangue combustion[J]. Fuel, 2012, 97: 644−650. doi: 10.1016/j.fuel.2012.02.027
[5] 王雪, 陈平, 王晓军, 等. 油酸钠体系下白云石、高岭土、石英的浮选性能[J]. 非金属矿, 2016, 39(4): 80−83. doi: 10.3969/j.issn.1000-8098.2016.04.024
WANG X, CHEN P, WANG X J, et al. Floatability of dolomite, kaolin and quartz in system of sodium oleate[J]. Non-Metallic Mines, 2016, 39(4): 80−83. doi: 10.3969/j.issn.1000-8098.2016.04.024
[6] MISZ-KENNAN M, FABIASKA M. Thermal transformation of organic matter in coal waste from Rymer Cones (Upper Silesian Coal Basin, Poland)[J]. International Journal of Coal Geology, 2010, 81(4): 343−358. doi: 10.1016/j.coal.2009.08.009
[7] 许泽胜, 陈佳蕊, 王森彪, 等. 煤矸石分级分质加工与利用的研究[J]. 中国煤炭, 2021, 47(11): 61−68. doi: 10.3969/j.issn.1006-530X.2021.11.010
XUE Z S, CHEN J R, WANG S B, et al. Study on the grading and quality-separating processing and utilization of coal gangue[J]. China Coal, 2021, 47(11): 61−68. doi: 10.3969/j.issn.1006-530X.2021.11.010
[8] MEI Z, DOU Y W, ZHANG Y Z, et al. Effects of the variety and content of coal gangue coarse aggregate on the mechanical properties of concrete[J]. Construction and Building Materials, 2019, 220(30): 386−395.
[9] 刘成龙, 许爱华, 夏举佩, 等. 煤矸石浸渣制备白炭黑工艺优化及性能分析[J]. 精细化工, 2019, 36(11): 2177−2184. doi: 10.13550/j.jxhg.20190348
LIU C L, XU A H, XIA J P, et al. Process optimization and performance analysis for preparation of silica from coal gangue leaching residue[J]. Fine Chemicals, 2019, 36(11): 2177−2184. doi: 10.13550/j.jxhg.20190348
[10] 吴红, 卢香宇, 罗忠竞, 等. 活化煤矸石免烧砖制备及机理分析[J]. 非金属矿, 2018, 41(1): 30−33. doi: 10.3969/j.issn.1000-8098.2018.01.010
WU H, LU X Y, LUO Z J, et al. Preparation and mechanism analysis of activated coal gangue unburned bricks[J]. Non-Metallic Mines, 2018, 41(1): 30−33. doi: 10.3969/j.issn.1000-8098.2018.01.010
[11] XIAO J, LI F, ZHONG Q, et al. Separation of aluminum and silica from coal gangue by elevated temperature acid leaching for the preparation of alumina and SiC[J]. Hydrometallurgy, 2015, 155: 118−124. doi: 10.1016/j.hydromet.2015.04.018
[12] 田爱杰, 田爱民, 孔令靓, 等. 正交试验法研究煤矸石中镓的提取工艺条件[J]. 中国锰业, 2016, 34(6): 96−99.
TIAN A J, TIAN A M, KONG L L, et al. Production skill of gallium in gangue of orthogonal experiment[J]. China’ Manganese Industry, 2016, 34(6): 96−99.
[13] SHANG Z, ZHANG L W, ZHAO X, et al. Removal of Pb(Ⅱ), Cd(Ⅱ) and Hg(Ⅱ) from aqueous solution by mercapto-modified coal gangue[J]. Journal of Environmental Management, 2019, 231(1): 391−396.
[14] 段锋, 马爱琼, 肖国庆, 等. 煤矸石在高温材料中的应用研究进展[J]. 硅酸盐通报, 2013, 32(9): 1811−1816.
DUAN F, MA A Q, XIAO G Q, et al. Study progress on application of coal gangue in high temperature materials[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(9): 1811−1816.
[15] LI C, WAN J, SUN H, et al. Investigation on the activation of coal gangue by a new compound method[J]. Journal of Hazardous Materials, 2010, 179(1-3): 515−520. doi: 10.1016/j.jhazmat.2010.03.033
[16] 李慧婉, 和东芹, 谢娟, 等. SnO2-ZnO/煤矸石复合物光催化降解有机磷农药的性能研究[J]. 矿产综合利用, 2020(4): 185−190. doi: 10.3969/j.issn.1000-6532.2020.04.032
LI H W, HE D Q, XIE J, et al. Study on the Photocatalytic Degradation of Organophosphorus Pesticides by SnO2-ZnO/coal gangue composite[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 185−190. doi: 10.3969/j.issn.1000-6532.2020.04.032
[17] MOHAMMADI R, AZADMEHR A, MAGHSOUDI A. Fabrication of the alginate-combusted coal gangue composite for simultaneous and effective adsorption of Zn(Ⅱ) and Mn(Ⅱ)[J]. Journal of Environmental Chemical Engineering, 2019, 7(6): 103494. doi: 10.1016/j.jece.2019.103494
[18] LI H, FENG Z, JING W, et al. Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption performance[J]. Chemical Engineering Journal, 2020, 390(15): 124513.
[19] BU N, LIU X, SONG S, et al. Synthesis of NaY zeolite from coal gangue and its characterization for lead removal from aqueous solution[J]. Advanced Powder Technology, 2020, 31(7): 2699−2710. doi: 10.1016/j.apt.2020.04.035
[20] RAVIKUMAR K V G, KUMAR D, KUMAR G, et al. Enhanced Cr(Ⅵ) removal by nanozerovalent iron-immobilized alginate beads in the presence of a biofilm in a continuous-flow reactor[J]. Industrial & Engineering Chemistry Research, 2016, 55(20): 5973−5982.
[21] PAKZADEH B, BATISTA J R. Chromium removal from ion-exchange waste brines with calcium polysulfide[J]. Water Research, 2011, 45(10): 3055−3064. doi: 10.1016/j.watres.2011.03.006
[22] AGRAWAL A, KUMAR V, PANDEY B D. Remediation opinions for the treatment of electroplating and leather tanning effluent containing chromium–a review[J]. Mineral Processing & Extractive Metallurgy Review, 2006, 27: 99−130.
[23] PRABHAKARAN S K, VIJAYARAGHAVAN K, BALASUBRAMANIAN R. Removal of Cr(Ⅵ) ions by spent tea and coffee dusts: reduction to Cr(Ⅲ) and biosorption[J]. Industrial & Engineering Chemistry Research, 2009, 48(4): 2113−2117.
[24] KUMAR A, JENA H M. Adsorption of Cr(Ⅵ) from aqueous solution by prepared high surface area activated carbon from Fox nutshell by chemical activation with H3PO4[J]. Journal of Environmental Chemical Engineering, 2017, 5(2): 2032−2041.
[25] AMINULLSLAM M, ANGOVE M J, MORTON D W. Recent innovative research on chromium (Ⅵ) adsorption mechanism[J]. Environmental Nanotechnology, Monitoring & Management, 2019, 12: 100267.
[26] DABROWSKI A, HUBICKI Z, PODKOSCIELNY P, et al. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method[J]. Chemosphere, 2004, 56(2): 91−106.
[27] JACHULA J, HUBICKI Z. Removal of Cr(Ⅵ) and As(Ⅴ) ions from aqueous solutions by polyacrylate and polystyrene anion exchange resins[J]. Applied Water Science, 2013, 3: 653−664.
[28] MA L, CHEN N, FENG C, et al. Enhanced Cr(Ⅵ) reduction in biocathode microbial electrolysis cell Enhanced Cr(Ⅵ) reduction in biocathode microbial electrolysis cell using Fenton-derived ferric sludge[J]. Water Research, 2022, 212(1): 118114.
[29] JIANG B, GONG Y, GAO J, et al. The reduction of Cr(Ⅵ) to Cr(Ⅲ) mediated by environmentally relevant carboxylic acids: state-of-the-art and perspectives[J]. Journal of Hazardous Materials, 2019, 365(5): 205−226.
[30] LI Y, WANG X J. Chromium (Ⅵ) reduction in aqueous solutions using coal gangue[J]. Desalination and Water Treatment, 2018, 113: 102−108.
[31] 李惠云, 郭金福. 热处理温度对煤矸石结构及吸附Cr6+性能的影响[J]. 非金属矿, 2005, 28(4): 45−47. doi: 10.3969/j.issn.1000-8098.2005.04.017
LI H Y, GUO J F. Effects of thermal treatment temperature on coal gangue structure and Cr6+adsorbability[J]. Non-Metallic Mines, 2005, 28(4): 45−47. doi: 10.3969/j.issn.1000-8098.2005.04.017
[32] 秦巧燕, 贾陈忠, 周学丽. 活化煤矸石对含铬废水的吸附处理研究[J]. 工业安全与环保, 2007(6): 23−25. doi: 10.3969/j.issn.1001-425X.2007.06.008
QIN Q Y, JIA C Z, ZHOU X L. Research on absorption treatment of wastewater containing chromium by active coal gangue[J]. Industrial Safety and Environmental Protection, 2007(6): 23−25. doi: 10.3969/j.issn.1001-425X.2007.06.008
[33] 南京大学《无机及分析化学》编写组. 无机及分析化学[M]. 北京: 高等教育出版社, 2006: 58-59.
Compilation Group of Inorganic and Analytical Chemistry, Nanjing University. Inorganic and Analytical Chemistry[M]. Beijing: Higher Education Press, 2006: 58-59.
-