基于响应面法的煤矸石胶结充填体抗压强度试验研究

张伟刚, 邱跃琴, 郭延庆, 刘萍. 基于响应面法的煤矸石胶结充填体抗压强度试验研究[J]. 矿产保护与利用, 2022, 42(6): 36-44. doi: 10.13779/j.cnki.issn1001-0076.2022.06.005
引用本文: 张伟刚, 邱跃琴, 郭延庆, 刘萍. 基于响应面法的煤矸石胶结充填体抗压强度试验研究[J]. 矿产保护与利用, 2022, 42(6): 36-44. doi: 10.13779/j.cnki.issn1001-0076.2022.06.005
ZHANG Weigang, QIU Yueqin, GUO Yanqing, LIU Ping. Experimental Study on Compressive Strength of Coal Gangue Cemented Backfill Based on Response Surface Method[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 36-44. doi: 10.13779/j.cnki.issn1001-0076.2022.06.005
Citation: ZHANG Weigang, QIU Yueqin, GUO Yanqing, LIU Ping. Experimental Study on Compressive Strength of Coal Gangue Cemented Backfill Based on Response Surface Method[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 36-44. doi: 10.13779/j.cnki.issn1001-0076.2022.06.005

基于响应面法的煤矸石胶结充填体抗压强度试验研究

  • 基金项目: 贵州省科技计划项目(黔科合基础[2020]1Z047)
详细信息
    作者简介: 张伟刚(1995—),男,甘肃白银人,硕士研究生,主要从事矿产资源开发与利用,E-mail:643834724@qq.com
    通讯作者: 邱跃琴(1974—),女,贵州福泉人,副教授,硕士研究生导师,主要研究方向为矿物材料加工与利用,E-mail:631958848@qq.com
  • 中图分类号: TD849+.5

Experimental Study on Compressive Strength of Coal Gangue Cemented Backfill Based on Response Surface Method

More Information
  • 煤矸石胶结充填可有效控制煤矿开采造成的地表沉陷,减少环境破坏。为研究细矸率、水泥掺量和料浆质量浓度对充填体抗压强度的影响规律,优化充填材料配比,在单因素试验基础上采用响应面法设计3因素17组配比试验,构建响应面回归模型并计算优化配比,为工程上获得合理充填材料配比提供科学方法。研究表明:单因素对充填体抗压强度的影响大小依次为料浆质量浓度、水泥掺量、细矸率;细矸率和料浆质量浓度交互作用对充填体早期抗压强度影响较小,水泥掺量和料浆质量浓度交互作用对充填体中后期抗压强度影响最大;为满足充填强度要求(一般≥5.0 MPa),经模型优化确定充填料浆最佳配比为m(煤矸石)︰m(粉煤灰)︰m(水泥)︰m(水)=50%︰22%︰8%︰20%,细矸率为52%时,充填体28 d抗压强度为5.07 MPa,验证试验误差范围在2%左右,模型精准可靠;水泥水化生成Ca(OH)2激发粉煤灰和煤矸石活性物质生成钙矾石(AFt)和水化硅酸钙(C-S-H)凝胶,随着龄期不断增长对胶凝体系起到了良好的连接作用,网状结构更加稳定,能有效提高充填体抗压强度。

  • 加载中
  • 图 1  (a)粉煤灰、(b)煤矸石和(c)水泥XRD光谱

    Figure 1. 

    图 2  不同因素对充填体3 d、7 d和28 d抗压强度的影响

    Figure 2. 

    图 3  充填体3 d、7 d、28 d抗压强度实际值与预测值对比

    Figure 3. 

    图 4  各龄期充填体抗压强度响应曲面图

    Figure 4. 

    图 5  3 d、7 d和28 d水化产物XRD光谱

    Figure 5. 

    图 6  3 d时充填体水化产物SEM及EDS图谱

    Figure 6. 

    图 7  7 d时充填体水化产物SEM及EDS图谱

    Figure 7. 

    图 8  28 d时充填体水化产物SEM及EDS图谱

    Figure 8. 

    表 1  煤矸石粒度分级

    Table 1.  Granularity classification of coal gangue

    粒径/mm<33-55-88-15>15
    占比/%22.5022.5025.0020.0010.00
    下载: 导出CSV

    表 2  充填材料的化学成分

    Table 2.  Chemical composition of filling materials /%

    材料SiO2Al2O3Fe2O3CaOMgOSO3其他
    煤矸石48.1419.4214.646.742.350.738.00
    粉煤灰48.5819.5916.454.371.502.826.70
    水泥17.674.253.8465.222.224.272.54
    下载: 导出CSV

    表 3  试验设计因素与水平编码值

    Table 3.  Experimental design factors and horizontal coding values

    影响因素水平编码值
    −101
    水泥掺量A/%4812
    细矸率B/%354555
    料浆质量浓度C/%767880
    下载: 导出CSV

    表 4  抗压强度试验值与预测值

    Table 4.  Compressive strength test value and predicted value

    编号编码值试验强度/MPa预测强度/MPa
    ABCY3dY7dY28dY3d*Y7d*Y28d*
    1−1010.81.22.20.801.282.25
    2−10−10.50.91.70.460.781.37
    3−1100.70.91.50.710.901.81
    4−1−100.60.81.50.650.851.46
    50−1−10.60.92.80.650.902.81
    601−10.712.50.711.132.86
    700011.54.20.981.524.26
    800011.54.20.981.524.26
    900011.64.40.981.524.26
    1000011.54.30.981.524.30
    110000.91.54.20.981.524.26
    120−1111.74.40.981.584.26
    130111.21.85.11.161.735.09
    141−101.31.44.21.291.334.26
    151011.51.96.11.542.026.43
    161101.41.75.71.411.655.39
    1710−11.21.43.61.151.403.55
    下载: 导出CSV

    表 5  回归模型方差分析结果

    Table 5.  Regression model variance analysis results

    养护龄期/d变异来源平方和自由度均方FP备注
    3模型1.3490.1550.78<0.0001Significant
    A0.9810.98334.63<0.0001
    B0.03110.03110.670.0137
    C0.2810.2896.04<0.0001
    AB0.0010.000.001.00
    AC0.0010.000.001.00
    BC2.5×10−312.5×10−30.850.3863
    A20.02210.0227.560.0285
    B20.01210.0123.960.0868
    C20.01210.0123.960.0868
    残差8.0×10−342.0×10−3
    失拟项0.01334.6×10−32.080.2451Not significant
    变异来源平方和自由度均方FP备注

    7
    模型1.8690.2114.770.0009Significant
    A0.8510.8560.360.0001
    B0.04510.0453.210.1161
    C0.7210.7251.430.0002
    AB0.0110.010.200.4260
    AC0.0110.013.200.4260
    BC2.2×10−1612.2×10−160.201.0000
    A20.1110.1135.580.0275
    B20.1110.117.580.0275
    C24.21×10−414.21×10−410.320.8672
    残差8.0×10−342.0×10−3
    失拟项0.09030.034.500.0121Not significant
    变异来源平方和自由度均方FP备注
    28模型32.0593.5635.13<0.0001Significant
    A20.16120.16198.91<0.0001
    B0.3210.323.160.1188
    C7.0317.0369.37<0.0001
    AB0.5610.565.550.0507
    AC1.0011.009.870.0164
    BC0.1210.121.210.3080
    A22.0912.0920.650.0027
    B20.4610.464.520.0710
    C20.1010.101.000.3511
    残差0.03248.0×10−3
    失拟项0.6830.2328.230.0038Not significant
    注:1)P为回归方程拒绝原假设的值;2)F为检验回归模型显著性的参数。
    下载: 导出CSV

    表 6  优化模型验证试验结果比较

    Table 6.  Optimization model validation test results ratio

    龄期3 d7 d28 d
    预测值/MPa1.141.815.06
    实测值/MPa1.11.65.0
    1.11.85.1
    1.21.95.1
    平均值/MPa1.131.775.07
    误差/%0.8%2.34%0.14 %
    下载: 导出CSV
  • [1]

    金会心, 吴复忠, 朱明燕, 等. 贵州六盘水煤矸石的矿物特性[J]. 过程工程学报, 2014, 14(1): 151−156.

    JIN H X, WU F Z, ZHU M Y, et al. Mineral properties of coal gangue in Liupanshui, Guizhou[J]. Journal of process engineering, 2014, 14(1): 151−156.

    [2]

    BELL F G, STACEY T R, GENSKE D D. Mining subsidence and its effect on the environment: some differing examples[J]. Environmental Geology, 2000, 40(1): 135−152.

    [3]

    张博, 彭苏萍, 王佟, 等. 构建煤炭资源强国的战略路径与对策研究[J]. 中国工程科学, 2019, 21(1): 88−96. doi: 10.15302/J-SSCAE-2019.01.013

    ZHANG B, PENG S P, WANG T, et al. Research on the strategic path and Countermeasures of building a coal resource power[J]. China Engineering Science, 2019, 21(1): 88−96. doi: 10.15302/J-SSCAE-2019.01.013

    [4]

    吴爱祥, 杨莹, 程海勇, 等. 中国膏体技术发展现状与趋势[J]. 工程科学学报, 2018, 40(5): 517−525.

    WU A X, YANG Y, CHENG H Y, et al. Development status and trend of paste technology in China[J]. Journal of Engineering Science, 2018, 40(5): 517−525.

    [5]

    XU J, XUAN D, HE C. Innovative backfilling longwall panel layout for better subsidence control effect—separating adjacent subcritical panels with pillars[J]. International Journal of Coal Science & Technology, 2014, 1(3): 297−305.

    [6]

    顾晓薇, 张延年, 张伟峰, 等. 大宗工业固废高值建材化利用研究现状与展望[J]. 金属矿山, 2022(1): 2−13.

    GU X W, ZHANG Y N, ZHANG W F, et al. Research status and prospects of high-value building materials utilization of bulk industrial solid wastes[J]. metal mines, 2022(1): 2−13.

    [7]

    YIN W, ZHANG K, OU Y S, et al. Study on properties of soda residue gangue backfilling materials and field measurement of surface subsidence[J]. Frontiers in Earth Science, 2021: 9.

    [8]

    段圆圆. 煤基固废协同利用制备采空区充填膏体试验研究[D]. 包头: 内蒙古科技大学, 2021.

    DUAN Y Y. Experimental study on Preparation of Gob Filling Paste by collaborative utilization of coal-based solid waste [D]. Baotou: Inner Mongolia University of science and technology, 2021.

    [9]

    SUN Q, ZHANG J, ZHOU N. Early-Age Strength of Aeolian Sand-Based Cemented Backfilling Materials: Experimental Results[J]. Arabian Journal for Science & Engineering, 2017.

    [10]

    郭晓彦. 充填膏体性能影响因素试验研究[D]. 太原: 太原理工大学, 2013.

    GUO X Y. Experimental study on factors affecting the performance of filling paste [D]. Taiyuan: Taiyuan University of technology, 2013.

    [11]

    高谦, 杨晓炳, 温震江, 等. 基于RSM-BBD的混合骨料充填料浆配比优化[J]. 湖南大学学报(自然科学版), 2019, 46(6): 47−55. doi: 10.16339/j.cnki.hdxbzkb.2019.06.007

    GAO Q, YANG X B, WEN Z J, et al. Optimization of mixture ratio of mixed aggregate filling slurry based on RSM-BBD[J]. Journal of Hunan University (Natural Science Edition), 2019, 46(6): 47−55. doi: 10.16339/j.cnki.hdxbzkb.2019.06.007

    [12]

    马致远, 刘勇, 周吉奎, 等. 响应曲面法优化废催化剂中微波浸出钒的工艺[J]. 中国有色金属学报, 2019, 29(6): 1308−1315. doi: 10.19476/j.ysxb.1004.0609.2019.06.20

    MA Z Y, LIU Y, ZHOU J K, et al. Optimization of microwave leaching process of vanadium from spent catalyst by response surface methodology[J]. Chinese Journal of nonferrous metals, 2019, 29(6): 1308−1315. doi: 10.19476/j.ysxb.1004.0609.2019.06.20

    [13]

    于跃. 煤矿新型胶结充填材料研发及其性能研究[D]. 北京: 中国矿业大学, 2017.

    YU Y. Research and development of new cemented filling materials for coal mines and their properties [D]. Beijing: China University of mining and Technology, 2017

    [14]

    刘树龙, 李公成, 刘国磊, 等. 基于响应面法的矿渣基全固废胶凝材料配比优化[J]. 硅酸盐通报, 2021, 40(1): 187−193. doi: 10.16552/j.cnki.issn1001-1625.2021.01.017

    LIU S L, LI G C, LIU G L, et al. Optimization of the proportion of slag based solid waste cementitious materials based on response surface methodology[J]. Silicate bulletin, 2021, 40(1): 187−193. doi: 10.16552/j.cnki.issn1001-1625.2021.01.017

    [15]

    温震江, 杨晓炳, 李立涛, 等. 基于RSM-BBD的全尾砂浆絮凝沉降参数选择及优化[J]. 中国有色金属学报, 2020, 30(6): 1437−1445. doi: 10.11817/j.ysxb.1004.0609.2020-36421

    WEN Z J, YANG X B, LI L T, et al. Selection and optimization of flocculation settlement parameters of full tail mortar based on rsm-bbd[J]. Chinese Journal of nonferrous metals, 2020, 30(6): 1437−1445. doi: 10.11817/j.ysxb.1004.0609.2020-36421

  • 加载中

(8)

(6)

计量
  • 文章访问数:  87
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2022-07-21
刊出日期:  2022-12-26

目录