Research on Efficient Development and Utilization Technology of All Components of Daxigou Siderite
-
摘要:
陕西大西沟拥有我国最大的菱铁矿床,现有焙烧工艺与尾矿处理面临着生产成本与环保的挑战。为提升矿山企业生命力,实现“降本增效,无尾矿山”的目标,对大西沟菱铁矿展开系统性研究。研究结果表明,试验矿石为低磷含硫含铜的磁铁矿-菱铁矿,根据其性质制订了预选抛尾—干式磨矿—闪速磁化焙烧—选铁—综合回收铜与云母—尾矿建材化的全流程方案。原矿TFe品位仅为19.91%,铁品位较低,这将大幅度增加后续处理成本。因此,为降低后续处理成本,矿石经磁选抛尾处理使得TFe品位达到23.34%。以预选样品作为基准,全流程可获得TFe品位60.49%、铁回收率83.81%的铁精矿,铜品位17.54%、铜回收率76.43%的铜精矿,含K2O、Al2O3分别为8.32%、25.36%和回收率30%左右的云母精矿,以及含K2O、Al2O3分别为6.06%、18.66%和回收率20%以上的次级云母精矿等四类产品,并且尾矿可作为建筑材料,实现了矿石的全组分利用,达到无尾矿山这一目标。
Abstract:Daxigou, Shaanxi Province, has the largest siderite deposit in China, and the existing roasting process and tailings treatment were constantly facing the challenges of production cost and environmental protection. A systematic study was undertaken to enhance the vitality of mining enterprises and achieve the goal of "reducing costs and increasing efficiency, no tailings". The results showed that the test ore consisted of magnetite-siderite with sulfur, and copper, and low phosphorus. Based on the properties of the ore, a comprehensive process flow comprising of pre-selection tailing, dry milling, flash magnetization roasting, iron beneficiation, the recovery of copper and mica and tailings building materials was developed. The TFe grade of the raw ore was low, only 19.91%, which would significantly increase the cost of subsequent processing. Therefore, the ore was pretreated by magnetic separation to achieve a TFe grade of 23.34% and reduce the subsequent processing cost. Furthermore, through the whole process, the iron concentrate with TFe grade of 60.49%, iron recovery rate of 83.81% was obtained, along with the copper concentrate with a copper grade of 17.54% and copper recovery rate of 76.43%. Meanwhile, the mica concentrate was obtained, and its K2O and Al2O3 contents were 8.32%, 25.36% and recovery rate was about 30% respectively. Additionally, the secondary mica concentrate contained K2O and Al2O3 at 6.06% and 18.66%, respectively, with a recovery rate of more than 20%. Notably, the tailings could be repurposed as building materials. All component utilization of the ore and the goal of tailing-free mine would be achieved.
-
Key words:
- siderite /
- flash magnetization roasting /
- utilization of all components /
- no tailings
-
-
表 1 矿石中主要矿物的含量
Table 1. Content of the main minerals in the ore
/% 矿 物 菱铁矿 磁铁矿 假象赤铁矿 黄铜矿 辉铜矿 黄铁矿 绢云母 含量 31.42 3.32 2.13 0.18 0.01 0.53 31.45 矿物 石英 重晶石 绿泥石 磷灰石 金红石 其他 含量 28.83 0.30 0.81 0.27 0.22 0.53 表 2 抛尾后矿样的化学多元素分析结果
Table 2. Chemical multi-element analysis results of tailings-discarding ore samples
/% 成分 TFe FeO Fe2O3 Cu BaSO4 SiO2 Al2O3 CaO MnO 含量 23.34 19.03 10.33 0.07 0.1 35.45 10.44 0.3 0.74 成分 MgO Na2O K2O P S C 烧失量 碱性系数 含量 1.7 0.084 3.6 0.057 0.41 3.02 13.14 0.04 注:碱性系数为(CaO+MgO)/(SiO2+Al2O3)。 表 3 预选抛尾后矿样中铁的化学物相分析结果
Table 3. Chemical phase analysis results of iron in ore samples after tailings-discarding process
/% 铁相 磁铁矿 赤(褐)铁矿 碳酸盐 硫化物 硅酸盐 合计 中铁 中铁 中铁 中铁 中铁 含量 1.79 6.26 12.91 0.05 2.33 23.34 分布率 7.67 26.82 55.31 0.22 9.98 100.00 表 4 预选抛尾后矿样中铜的化学物相分析结果
Table 4. Chemical phase analysis results of copper in ore samples after tailings-discarding process
/% 铜相 原生硫化铜 次生硫化铜 自由氧化铜 结合氧化铜 合计 含量 0.06 0.007 0.002 0.001 0.07 分布率 85.71 10.00 2.86 1.43 100.00 表 5 样品的铁物相分析结果
Table 5. Results of iron phase analysis of the sample
/% 物 相 原矿样 焙烧矿 铁含量 分布率 铁含量 分布率 磁铁矿中铁 1.79 7.67 18.49 70.68 游离氧化亚铁中铁 − − 1.24 4.74 假象赤铁矿中铁 − − 3.35 12.81 菱铁矿中铁 12.91 55.31 0.17 0.65 赤(褐)铁矿中铁 6.26 26.82 0.33 1.26 硫化物中铁 0.05 0.21 0.04 0.15 硅酸盐中铁 2.33 9.98 2.54 9.71 合计 23.34 100.00 26.16 100.00 表 6 选铁尾矿的化学多元素分析结果
Table 6. Results of chemical multi-element analysis of iron tailings
/% 成分 Cu S TFe SiO2 Al2O3 BaSO4 含量 0.101 0.57 5.20 61.45 16.65 1.70 成分 TiO2 CaO MgO MnO K2O P2O5 含量 0.65 0.42 0.98 0.24 5.86 0.17 表 7 选铁尾矿中铜的化学物相分析结果
Table 7. Chemical phase analysis results of copper in iron tailings
/% 铜相 次生硫化铜
中铜原生硫化铜
中铜自由氧化铜
中铜结合氧化铜
中铜合计 含量 0.096 0.0008 0.0024 0.0018 0.101 分布率 95.05 0.79 2.38 1.78 100.00 表 8 选铁尾矿中硫的化学物相分析结果
Table 8. Chemical phase analysis results of sulfur in iron tailings
/% 硫相 硫化物中硫 硫酸盐中硫 单质硫中硫 合计 含量 0.37 0.19 0.02 0.58 分布率 63.79 32.76 3.45 100.00 表 9 总尾矿化学成分分析
Table 9. Chemical composition analysis of total tailings
/% 成 分 Fe SiO2 Al2O3 CaO MgO K2O Na2O P S 含 量 5.89 66.49 12.69 0.49 0.90 4.26 0.16 0.12 0.258 -
[1] 中国矿业氧吧之十一 金属矿产 铁矿[J]. 资源与人居环境, 2007(5): 21-26.
China mining oxygen bar No. 11 metal minerals iron ore[J]. Resources and Human Settlement, 2007(5): 21-26.
[2] 陈雯, 张立刚. 复杂难选铁矿石选矿技术现状及发展趋势[J]. 有色金属(选矿部分), 2013(S1): 19−23.
CHEN W, ZHANG L G. Status quo and development trend of ore beneficiation technology for complex and difficult-to-do iron ore[J]. Nonferrous Metals(Mineral Processing Part), 2013(S1): 19−23.
[3] 王昆, 戴惠新. 菱铁矿选矿现状[J]. 矿产综合利用, 2012(1): 6-9.
WANG K, DAI H X. Comprehensive Utilization of Minerals, 2012(1): 6-9.
[4] 刘小银, 余永富, 洪志刚, 等. 难选弱磁性铁矿石闪速(流态化)磁化焙烧成套技术开发与应用研究[J]. 矿冶工程, 2017, 37(2): 40−45. doi: 10.3969/j.issn.0253-6099.2017.02.010
LIU X Y, YU Y F, HONG Z G, et al. Development and application of lightning (fluidization) magnetization roasting technology for difficult-to-select weak magnetic iron ore[J]. Mining and Metallurgical Engineering, 2017, 37(2): 40−45. doi: 10.3969/j.issn.0253-6099.2017.02.010
[5] 陈雯, 余永富, 冯志力, 等. 60万t/a难选菱(褐)铁矿闪速磁化焙烧成套技术与装备[J]. 金属矿山, 2017(3): 54−58. doi: 10.3969/j.issn.1001-1250.2017.03.011
CHEN W, YU Y F, FENG Z L, et al. 600 000 t/a technology and equipment for flash magnetization roa sting of rhombus (brown) iron ore[J]. Metal Mine, 2017(3): 54−58. doi: 10.3969/j.issn.1001-1250.2017.03.011
[6] 赵礼兵, 王帅, 梁艳涛, 等. 焙烧铁尾矿制备透水砖试验研究[J]. 金属矿山, 2020(7): 216−220.
ZHAO L B, WANG S, LIANG Y T, et al. Experimental study on preparation of permeable bricks from roasted iron tailings[J]. Metal Mine, 2020(7): 216−220.
[7] 王梓. 铁尾矿陶粒及免烧砖的制备及性能[D]. 马鞍山: 安徽工业大学, 2021.
WANG Z. Preparation and properties of iron tailings ceramic grains and burning-free bricks[D]. Maanshan: Anhui University of Technology, 2021.
[8] 周明顺, 王义栋, 赵东明, 等. 高配比磁铁精矿烧结技术的研究进展[J]. 钢铁, 2020, 55(5): 1−9.
ZHOU M S, WANG Y D, ZHAO D M, et al. Research progress of sintering technology of high ratio magnetite concentrate[J]. Iron and Steel, 2020, 55(5): 1−9.
[9] J. M. F CLOUT, J. R MANUEL. Fundamental investigations of differences in bonding mechanisms in iron ore sinter formed from magnetite concentrates and hematite ores[J]. Powder Technology, 2003, 130: 393. doi: 10.1016/S0032-5910(02)00241-3
[10] 李世汨. 陶粒原料的分类及陶粒的膨胀机理[EB/OL]. (2017-08-03). https://www.mining120.com/tech/show-htm-itemid-30576.html.
LI S M. Classification of ceramic raw materials and expansion mechanism of ceramic grains[EB/OL]. (2017-08-03). https://www.mining 120.com/tech/show-htm- itemid-30576.html.
[11] 韩鹏. 高硅型铁尾矿对混凝土和易性及抗压强度影响试验研究[D]. 沈阳: 东北大学, 2013.
HAN P. Experimental study on the effect of high silicon iron tailings on concrete workability and compressive strength[D]. Shenyang: Northeastern University, 2013.
[12] 王英杰. 铁尾矿在建筑材料领域应用的研究进展[J]. 陶瓷, 2022(9): 9−13. doi: 10.3969/j.issn.1002-2872.2022.09.001
WANG Y J. Research progress on the application of iron tailings in the field of building materials[J]. Ceramics, 2022(9): 9−13. doi: 10.3969/j.issn.1002-2872.2022.09.001
-