Experimental Study on Comprehensive Recovery of Rare Earth and Fluorite from an Iron Tailings of Concentrator in Bayan Obo
-
摘要:
白云鄂博铁矿是世界上罕见的大型多金属矿床,多年来只作为铁矿和稀土矿进行开发,选别流程中稀土回收率较低,造成大量稀土资源和矿体中蕴含的萤石资源随着选铁尾矿排入到尾矿库中。为综合回收稀土和萤石资源,以白云鄂博某选厂选铁尾矿为研究对象,开展综合回收稀土和萤石的研究,采用的工艺流程为稀土浮选—萤石预选—萤石精选—强磁选。稀土浮选以水玻璃为抑制剂、SR为捕收剂、2#油为起泡剂,萤石预选以水玻璃为抑制剂、SF为捕收剂,萤石精选以酸性水玻璃为调整剂、SY为抑制剂、油酸钠为捕收剂,最终获得了REO品位50.54%、REO回收率92.32%的稀土精矿和CaF2品位95.51%、回收率50.98%的萤石精矿。
Abstract:The Bayan Obo Iron Mine is a rare large-scale polymetallic deposit in the world, only iron ore and rare earth were utilized for many years. The recovery rate of rare earth in the beneficiation process is low, resulting in a considerable amount of rare earth and fluorite resources contained in the ore body being discharged into the tailings pond alongside the iron tailings. To achieve comprehensive recovery of rare earth and fluorite resources, the research on comprehensive recovery of rare earth and fluorite was carried out with the iron tailings of a concentrator in Bayan Obo. The process flow adopted in the test was rare earth flotation - fluorite preconcentration - fluorite concentration - high intensity magnetic separation. Sodium silicate, SR and 2# oil were used in rare earth flotation. Sodium silicate and SF were used in fluorite preconcentration. Acidified sodium silicate, SY and sodium oleate were used in fluorite concentration. Finally, rare earth concentrate with REO grade of 50.54%, REO recovery of 92.32% and fluorite concentrate with CaF2 grade of 95.51% and recovery of 50.98% were obtained.
-
Key words:
- Bayan Obo Iron Mine /
- tailings /
- rare earth /
- fluorite /
- flotation
-
-
表 1 原矿化学多元素分析结果
Table 1. Multi-elements analysis results of of raw ore
/% 元素 TFe CaF2 REO P S F K2O 含量 9.70 26.49 9.35 1.44 1.37 12.89 0.44 元素 Na2O CaO MgO Al2O3 TiO2 BaO SiO2 含量 1.34 26.57 4.02 1.44 0.64 3.50 13.40 表 2 原矿矿物组成分析
Table 2. Mineral composition analysis of raw ore
/% 矿物名称 赤铁矿及
磁铁矿等萤石 白云石
方解石辉石
闪石石英
长石含量 10.3 28.1 16.1 14.9 7.4 矿物名称 云母 磷灰石 重晶石 稀土矿物 其他 含量 3.4 1.3 3.9 11.9 2.7 表 3 原矿的粒度分布
Table 3. Particle size distribution of raw ore
粒度/mm 产率/% 品位/% 分布率/% REO CaF2 REO CaF2 +0.074 27.81 6.24 28.60 17.96 30.02 −0.074+0.045 12.31 7.77 28.62 9.90 13.30 −0.045+0.037 8.83 9.77 25.49 8.93 8.50 −0.037+0.025 6.95 10.95 25.14 7.88 6.60 −0.025 44.10 12.12 24.98 55.33 41.58 合 计 100.00 9.70 26.49 100.00 100.00 表 4 稀土闭路浮选试验结果
Table 4. Results of closed circuit flotation test on rare earth flotation
产品名称 REO品位/% REO回收率/% 稀土精矿 50.54 92.32 稀土尾矿 1.07 51.21 合计 9.35 100.00 表 5 稀土浮选尾矿化学多元素分析结果
Table 5. Multi-elements analysis results of of rare earth flotation tailings
元素 TFe CaF2 REO P S F K2O 含量/% 10.80 27.00 1.07 0.60 1.50 12.38 0.77 元素 Na2O CaO MgO Al2O3 TiO2 BaO SiO2 含量/% 1.680 27.37 6.55 1.51 0.61 4.16 15.30 表 6 稀土浮选尾矿矿物组成分析
Table 6. Mineral composition analysis of rare earth flotation tailings
矿物名称 赤铁矿及
磁铁矿等萤石 白云石
方解石辉石
闪石石英
长石含量/% 11.2 29.3 19.2 16.6 9.5 矿物名称 云母 磷灰石 重晶石 稀土矿物 其他 含量/% 5.6 1.5 4.0 1.2 1.9 表 7 萤石预选闭路浮选试验结果
Table 7. Results of closed circuit flotation test on fluorite preconcentration
/% 产品名称 CaF2品位 CaF2回收率 萤石预选精矿 44.23 92.32 萤石预选尾矿 4.75 7.68 合计 27.00 100.00 表 8 萤石预选精矿粒度分布
Table 8. Particle size distribution of fluorite preconcentration concentrate
粒级/mm 产率/% 品位/% 分布率/% TFe CaF2 TFe CaF2 +0.074 6.06 4.80 57.33 5.80 7.77 −0.074+0.045 20.68 5.60 47.06 23.11 21.78 −0.045+0.037 11.53 5.20 43.39 11.96 11.20 −0.037+0.025 16.80 5.60 41.23 18.77 15.50 −0.025 44.93 4.50 43.51 40.35 43.75 合 计 100.00 5.01 44.68 100.00 100.00 表 9 萤石预选精矿矿物组成分析
Table 9. Mineral composition analysis of fluorite preconcentration concentrate
矿物
名称含铁
矿物萤石 白云石 重晶石 霓石、闪石 石英 其他 含量/% 4.0 65.5 16.5 8.0 2.5 1.5 2.0 表 10 萤石预选精矿解离度分析
Table 10. Analysis of dissociation degree of fluorite preconcentration concentrate
项目 萤石
单体连生体 萤石−含铁
矿物萤石−
碳酸盐萤石−
独居石萤石−
重晶石萤石−
其他含量/% 86.9 4.9 3.0 4.0 0.7 0.5 表 11 萤石预选精矿磨矿后粒度分布
Table 11. Particle size distribution of fluorite preconcentration concentrate after grinding
粒度/mm 产率/% 品位/% 分布率/% TFe CaF2 TFe CaF2 +0.045 3.88 5.80 47.13 4.50 4.09 −0.045+0.037 9.62 5.00 44.01 9.63 9.48 −0.037+0.025 25.88 5.80 46.23 30.05 26.78 −0.025 60.62 4.60 43.95 55.82 59.64 合 计 100.00 5.00 44.67 100.00 100.00 表 12 萤石预选精矿磨矿后解离度分析
Table 12. Analysis of dissociation degree of fluorite preconcentration concentrate after grinding
项目 萤石
单体连生体 萤石−含铁
矿物萤石−
碳酸盐萤石−
稀土矿萤石−
重晶石萤石−
其他含量/% 93.8 1.9 0.9 2.6 0.5 0.3 表 13 萤石精选闭路试验结果
Table 13. Results of closed circuit flotation test on fluorite preconcentration
/% 产品名称 CaF2品位 CaF2回收率 萤石浮选精矿 93.35 71.38 萤石浮选尾矿 19.13 28.62 合计 44.23 100.00 表 14 强磁选试验结果
Table 14. Results of high intensity magnetic separation test
场强/(kA·m-1) 产品
名称产率/% 品位/% 回收率/% TFe CaF2 TFe CaF2 636.8 强磁选精矿 89.80 0.60 95.51 29.94 91.88 强磁选尾矿 10.20 12.40 74.33 70.06 8.12 合计 100.00 1.80 93.35 100.00 100.00 表 15 全流程闭路试验结果
Table 15. Results of closed circuit flotation test on overall process
/% 产品名称 REO品位 REO回收率 CaF2品位 CaF2回收率 稀土精矿 50.54 92.32 35.05 15.77 萤石预选
尾矿0.92 3.55 4.75 6.47 萤石浮选
尾矿0.51 1.68 19.13 22.26 萤石精矿 1.24 1.88 95.51 50.98 磁选尾矿 3.31 0.57 74.37 4.52 合计 9.35 100.00 26.49 100.00 表 16 萤石精矿化学多元素分析结果
Table 16. Multi-elements analysis results of fluorite concentrate
元素 TFe CaF2 REO P S F K2O 含量/% 0.60 95.51 1.24 0.19 0.13 45.32 0.027 元素 Na2O CaO MgO Al2O3 TiO2 BaO SiO2 含量/% 0.049 0.55 1.07 2.02 0.063 0.093 0.92 -
[1] 何宏平, 杨武斌. 我国稀土资源现状和评价[J]. 大地构造与成矿学, 2022, 46(5): 829−841.
HE H P, YANG W B. REE mineral resources in China: review and perspective[J]. Geotectonica et Metallogenia, 2022, 46(5): 829−841.
[2] 李潇雨, 惠博, 熊文良, 等. 白云鄂博稀土资源综合利用现状概述[J]. 矿产综合利用, 2021(5): 17−24. doi: 10.3969/j.issn.1000-6532.2021.05.003
LI X Y, HUI B, XIONG W L, et al. Multipurpose utilization of rare earth resources in Bayan Obo[J]. Multipurpose Utilization of Mineral Resources, 2021(5): 17−24. doi: 10.3969/j.issn.1000-6532.2021.05.003
[3] 李丽匣, 刘廷, 袁致涛, 等. 我国萤石矿选矿技术进展[J]. 矿产保护与利用, 2015(6): 46−53.
LI L X, LIU T, YUAN Z T, et al. The development in beneficiation of fluorite in China[J]. Conservation and Utilization of Mineral Resources, 2015(6): 46−53.
[4] 邹灏, 张寿庭, 方乙, 等. 中国萤石矿的研究现状及展望[J]. 国土资源科技管理, 2012(5): 35−42. doi: 10.3969/j.issn.1009-4210.2012.05.006
ZOU H, ZHANG S T, FANG Y, et al. Current sityation and prospect of flyorite deposit researches in China[J]. Scientific and Technological Management of Land and Resources, 2012(5): 35−42. doi: 10.3969/j.issn.1009-4210.2012.05.006
[5] 王振亮, 鲁瑞君, 林天亮, 等. 浅谈世界萤石资源现状及萤石产业发展方向[J]. 中国非金属矿工业导刊. 2013(3): 3-5.
WANG Z L, LU R J, LIN T L, et al. Disussion on the situation of the world fluorite resource and the development direction of fluorite industry[J]. China Non-metallic Minerals Industry, 2013(3): 3-5.
[6] 牛丽贤, 张寿庭. 中国萤石产业发展战略思考[J]. 中国矿业, 2010(8): 21−25. doi: 10.3969/j.issn.1004-4051.2010.08.007
NIU L X, ZHANG S T. Reviews on strategy of china fluorite industry development[J]. China Mining Magazine, 2010(8): 21−25. doi: 10.3969/j.issn.1004-4051.2010.08.007
[7] 王文利, 白志民. 中国萤石资源及产业发展现状[J]. 金属矿山, 2014(3): 1−9.
WANG W L, BAI Z M. Fluorite resources in China and its industrial development status[J]. Metal Mine, 2014(3): 1−9.
[8] 王吉平, 商朋强, 熊先孝, 等. 中国萤石矿床成矿规律[J]. 中国地质, 2015(1): 18−32. doi: 10.3969/j.issn.1000-3657.2015.01.003
WANG J P, SHANG P Q, XIONG X X, et al. Metallogenic regularity of fluorite deposits in china[J]. Geology in China, 2015(1): 18−32. doi: 10.3969/j.issn.1000-3657.2015.01.003
[9] ZHOU W B, JOSUE MORENO, ROBERTO TORRES, et al. Flotation of fluorite from ores by using acidized water glass as depressant[J]. Minerals Engineering, 2013: 45.
[10] DONG Y W, JIANG Z H, LIANG L K, et al. Hydrogen permeability of slags containing calcium fluoride[J]. Journal of Central South University of Technology, 2011, 18(4).
[11] 周文波, 程杰, 冯齐, 等. 酸化水玻璃在墨西哥某高钙型萤石矿选矿试验中的作用[J]. 非金属矿, 2013, 36(3): 31−32+36.
ZHOU W B, CHENG J, FENG Q, et al. The effect of acidized water glass on beneficiation test of mexico high calcium type fluorite ore[J]. Non-Metallic Mines, 2013, 36(3): 31−32+36.
[12] 杨治仁, 边雪, 吴文远. 油酸钠为捕收剂时四种抑制剂对人造萤石的抑制研究[J]. 有色金属(选矿部分), 2016(2): 90−92+97.
YANG Z Y, BIAN X, WU W Y, et al. Studyon four types of depressants on depression of artificial fluorite by using sodium oleate as collector[J]. Nonferrous Metals(Mineral Processing Section), 2016(2): 90−92+97.
[13] 吕子虎, 卫敏, 吴东印, 等. 新型捕收剂在萤石浮选中的应用研究[J]. 矿冶工程, 2013, 33(5): 56−58. doi: 10.3969/j.issn.0253-6099.2013.05.014
LV Z H, WEI M, WU D Y, et al. Application of new collector in fluorite flotation[J]. Mining and Metallurgical Engineering, 2013, 33(5): 56−58. doi: 10.3969/j.issn.0253-6099.2013.05.014
-