Investigation on Recovering Fluorite from Tailings of an Iron Ore Concentrator in Inner Mongolia
-
摘要:
为高效利用内蒙古某铁矿选矿厂尾矿中的萤石资源,对其开展了详细的工艺矿物学分析和浮选试验研究。试验结果表明:在磨矿、磁选除铁后,采用硫酸为pH调整剂、水玻璃为抑制剂、L-1001为捕收剂,通过一次粗选九次精选二次扫选的闭路浮选流程,可获得CaF2品位97.12%、回收率85.73%的浮选精矿,再经强磁选可获得CaF2品位97.78%、全流程回收率78.25%的萤石精矿。
Abstract:To achieve efficient utilization of fluorite resources in the tailings of an iron concentrator in Inner Mongolia, process mineralogy and flotation tests were carried out. The results showed that following iron removal by grinding and magnetic separation, flotation concentrate with CaF2 grade of 97.12% and recovery of 85.73% was obtained by using sulfuric acid as pH regulator, sodium silicate as inhibitor, and L-1001 as collector through the closed circuit flotation comprising one roughing, nine cleaning, and two scavenging. Further, the fluorite concentrate with CaF2 grade of 97.78% and full process recovery rate of 78.25% could be obtained through high intensity magnetic separation.
-
Key words:
- an iron ore /
- tailings /
- fluorite /
- flotation
-
-
表 1 试验给矿多元素分析结果
Table 1. Multi-elements analysis results of feeding
元素 TFe CaF2 REO P S MnO K2O 含量/% 9.80 26.64 4.02 0.38 1.37 1.53 2.850 元素 Na2O CaO MgO Al2O3 TiO2 BaO SiO2 含量/% 0.955 3.74 9.15 5.52 0.49 2.22 24.77 表 2 试验给矿矿物组成分析
Table 2. Mineral composition analysis of feeding
矿物名称 铁矿物 萤石 方解石、
白云石稀土矿物 闪石 含量/% 10.2 29.6 18.6 5.2 2.6 矿物名称 云母 磷灰石、重晶石 辉石 石英、长石 其他 含量/% 3.5 4.3 0.7 25.6 0.7 表 3 试验给矿中萤石解离度分析结果
Table 3. Analysis results of fluorite dissociation in feeding
粒级/μm −60 −20 −10 −8 −7 −5 −4 −3 总计 原矿石粒级产率/% 7.7 10 32.51 16.37 15.26 7.71 6.75 3.70 100.00 萤石单体解离度/% 46.7 71.0 87.00 − 89.20 93.10 98.90 97.20 95.70 萤石单体解离量/% 8.6 16.10 23.00 15.4 15.10 7.20 6.70 3.60 95.70 萤石与稀土连生量/% 1.70 1.60 2.60 − 1.60 0.20 0.02 0.04 7.40 萤石与铁矿物连生量/% 1.90 1.70 3.80 − 1.40 0.30 0.06 0.06 9.20 萤石与铁稀土连生量/% 0.50 0.60 1.10 − 0.20 − − − 2.70 表 4 不同种类捕收剂浮选试验结果
Table 4. Results of flotation tests of different collectors
捕收剂名称 产品名称 CaF2品位/% CaF2回收率/% C180 粗精矿 42.67 48.05 中矿 29.48 33.03 尾矿 12.55 18.91 给矿 26.64 100.00 油酸 粗精矿 42.28 56.03 中矿 25.66 24.08 尾矿 14.32 19.09 给矿 26.44 100.00 L-1001 粗精矿 50.18 64.04 中矿 28.60 28.99 尾矿 4.76 6.97 给矿 26.64 100.00 表 5 萤石浮选闭路试验结果
Table 5. Closed circuit test results of fluorite flotation
产品名称 产率/% CaF2品位/% CaF2回收率/% REO品位/% REO回收率/% 浮选精矿 23.52 97.12 85.73 1.22 30.35 浮选尾矿 76.48 4.97 14.27 4.88 59.65 给矿 100.00 26.64 100.00 4.02 100.00 表 6 强磁选试验结果
Table 6. Test results of high intensity magnetic separation
产品名称 产率/% CaF2品位/% CaF2回收率/% REO品位/% REO回收率/% 萤石精矿 90.66 97.78 91.28 0.34 25.27 磁选尾矿 9.34 90.67 8.72 9.76 74.73 给矿 100.00 97.12 100.00 1.22 100.00 表 7 萤石精矿主要化学元素分析结果
Table 7. Analysis results of main chemical elements of fluorite concentrate
元素 CaF2 CaCO3 S P SiO2 REO 含量/% 97.78 0.86 0.08 0.16 0.48 0.34 -
[1] 王春连, 王九一, 游超, 等. 战略性非金属矿产厘定、关键应用和供需形势研究[J]. 地球学报, 2022, 43(3): 267−278.
WANG C L, WANG J Y, YOU C, et al. A studyon strategic non-metallic mineral definition, key applications, and supply and demand situation[J]. Acta Geoscientica Sinica, 2022, 43(3): 267−278.
[2] 陈正国, 颜玲亚, 高树学. 战略性非金属矿产资源形势分析[J]. 中国非金属矿工业导刊, 2021(2): 1−8+23. doi: 10.3969/j.issn.1007-9386.2021.02.001
CHEN Z G, YAN L Y, GAO S X. Analysis on the situation of strategic non-metallic mineral resources[J]. China Non-metallic Minerals Industry, 2021(2): 1−8+23. doi: 10.3969/j.issn.1007-9386.2021.02.001
[3] 赵立群. 全球氟材料发展现状及趋势[J]. 化学工业, 2018, 36(4): 7−14.
ZHAO L Q. The development status and trend of fluorine materials abroad[J]. Chemical Industry, 2018, 36(4): 7−14.
[4] 赵鹏, 郑厚义, 张新, 等. 中国萤石产业资源现状及发展建议[J]. 化工矿产地质, 2020, 42(2): 178−183.
ZHAO P, ZHENG H Y, ZHANG X, et al. Resource actualities and demand countermeasures of fluorite in China[J]. Geology of Chemical Minerals, 2020, 42(2): 178−183.
[5] 张丹仙, 亢建华, 黄红军, 等. 萤石资源开发利用现状与战略意义[J/OL]. 过程工程学报: 1-14[2022-12-05]. http://kns.cnki.net/kcms/detail/11.4541.TQ.20220616.1459.004.html
ZHANG D X, KANG J H, HUANG H J, et al. Present situation and strategic significance of fluorite resources development and utilization[J/OL]. The Chinese Journal of Process Engineering: 1-14[2022-12-05]. http://kns.cnki.net/kcms/detail/11.4541.TQ.20220616.1459.004.html
[6] 张凌燕, 洪礼, 王芳, 等. 某难选萤石矿低温浮选试验研究[J]. 中国矿业, 2009, 18(7): 70−72+75. doi: 10.3969/j.issn.1004-4051.2009.07.022
ZHANG L Y, HONG L, WANG F, et al. A flotation experimental research on low temperature flotation of a refractory fluorite ore[J]. China Mining Magazine, 2009, 18(7): 70−72+75. doi: 10.3969/j.issn.1004-4051.2009.07.022
[7] 李育彪, 杨旭. 我国萤石资源及选矿技术进展[J]. 矿产保护与利用, 2022, 42(2): 49−58.
LI Y B, YANG X. Overview of fluorite resources and processing technology in China[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 49−58.
[8] 张静茹. 微细粒萤石与石英分散行为及机理研究[D]. 呼和浩特: 内蒙古科技大学, 2021.
ZHANG J R. Dispersion behavior and mechanism of micro-fine fluorite and quartz[D]. Huhhot: Inner Mongolia University of Science and Technology, 2021.
[9] 曹志明, 严群, 钟志刚, 等. 萤石常温浮选药剂研究现状与展望[J]. 矿产综合利用, 2017(4): 21−27.
CAO Z M, YAN Q, ZHONG Z G, et al. Status and prospect of room temperature on the flotation of fluorite[J]. Conservation and Utilization of Mineral Resources, 2017(4): 21−27.
[10] 郑仁基. 不同缺陷类型萤石浮选行为与机理研究[D]. 武汉: 武汉理工大学, 2019.
ZHENG R J. Study on the flotation behavior and mechanism of the fluorites with different defect types[D]. Wuhan: Wuhan University of Technology, 2019.
[11] 张绍彦. 含钙矿物与石英浮选体系中矿物的交互影响研究[D]. 赣州: 江西理工大学, 2022
ZHANG S Y. Research on the reciprocal influences between calcium-containing ores and quartz in flotation [D]. Ganzhou: Jiangxi University of Science and Technology, 2022.
-