Study on Preparation of Lightweight Ceramsite with High Blending Capacity using Low Silicon Iron Tailings
-
摘要:
为解决低硅铁尾矿大量堆存且利用难度大等问题,以杨家湾尾矿库低硅铁尾矿为主要原料,掺入了某铜尾矿和市售煤粉,通过烧结法制备轻质烧结陶粒,并考察了原料配比、水料比、尾矿粒度、烧结条件等因素对陶粒性能的影响。结果表明,质量配比为m(铁尾矿)∶m(铜尾矿)∶m(煤粉)=8∶1∶1(即铁尾矿掺量80%)、水料比1∶5、烧结温度1 120 ℃、烧结时间20 min的条件下制备出堆积密度为873.2 kg/m3、筒压强度5.13 MPa、1 h吸水率为7.65%的轻质陶粒,结合陶粒形貌、物相及热重分析,陶粒烧结过程中产生了起增强强度作用且呈致密网状结构的透辉石。该研究为低硅铁尾矿的资源化利用提供了新的利用途径。
Abstract:In response to the challenges of large amount of low silicon iron tailings and great difficulty in utilization, light weight sintered ceramsite was prepared using the low silicon iron tailings from Yangjiawan tailings pond as the main raw material, which was combined with copper tailings and pulverized coal commercially available. The effects of ingredient ratio, mass ratio of water and material, particle size, sintering conditions and other factors on the properties of ceramsite were investigated in details. The results showed that the lightweight ceramsite possessed a bulk density of 873.2 kg/m3, cylinder pressure strength of 5.13 MPa and water absorption of 7.65% in 1 h, under the condition of a mass ratio of m(iron tailings)∶m(copper tailings)∶m(coal powder) = 8∶1∶1 (i.e. 80% of iron tailings), water to material ratio of 1∶5, sintering temperature of 1120 ℃, and sintering time of 20 min. According to the morphology, phase and thermogravimetric analyses of ceramsite, diopside with dense network structure was formed and could improve the pressure of ceramsite during the sintering process. It therefore provides a novel way for the resource utilization of low silicon iron tailings.
-
Key words:
- low-silicon /
- iron tailings /
- copper tailings /
- high dosage /
- lightweight ceramsite
-
-
表 1 主要原料化学成分
Table 1. Chemical composition of main raw materials
/% 原料 SiO2 CaO Fe2O3 Al2O3 SO3 K2O MgO Na2O MnO TiO2 铁尾矿3 35.10 20.00 11.96 12.93 7.59 4.62 4.21 1.74 0.24 0.69 铁尾矿6 25.29 26.87 16.26 9.68 9.63 2.79 6.96 0.78 0.3 0.65 铁尾矿9 26.24 25.94 15.40 10.17 9.52 2.98 7.32 0.84 0.29 0.56 铜尾矿 27.70 35.78 25.23 5.85 0.10 0.83 2.53 0.51 0.66 0.32 表 2 正交配比设计表
Table 2. Orthogonal ratio design table
因素 单位 水平 1 2 3 A 铁尾矿 g 60 70 80 B 铜尾矿 g 5 10 15 C 煤粉 g 0 5 10 表 3 正交试验测试数据汇总表
Table 3. Summary of orthogonal test data
试验序号 因素 表观密度/(kg·m−3) 1 h吸水率/% A B C 1 1 1 1 1965.2 3.27 2 1 2 2 2054.5 9.73 3 1 3 3 2200.1 5.04 4 2 1 3 1817.1 16.28 5 2 2 1 1879.8 14.42 6 2 3 2 2220.0 11.71 7 3 1 2 2252.2 3.17 8 3 2 3 1701.5 13.16 9 3 3 1 1938.2 12.40 表 4 正交试验极差分析结果
Table 4. Range analysis results of orthogonal test
因素 指标 各水平下指标的平均值(k) 极差(R) 较优水平 k1 k2 k3 A 表观密度 2073.3 1972.3 1964.0 109.3 3 吸水率 6.01 14.14 9.58 8.12 1 B 表观密度 2011.5 1878.6 2119.4 240.8 2 吸水率 7.57 12.44 9.72 4.86 1 C 表观密度 1927.8 2175.6 1906.7 268.9 3 吸水率 10.03 8.20 11.49 3.29 2 表 5 不同粒度陶粒性能测试结果
Table 5. Summary of ceramsite properties with different particle sizes
组别 采样点 配料比 堆积密度/(kg·m−3) 表观密度/(kg·m−3) 1 h吸水率/% 24 h吸水率/% 筒压强度/MPa 1 3 8∶1∶1 1021.3 1950.1 17.46 17.82 3.72 2 6 8∶1∶1 916.3 1776.5 7.65 7.73 7.63 3 9 8∶1∶1 912.0 1739.1 16.77 17.28 2.69 表 6 不同烧结温度下的陶粒性能
Table 6. Summary of ceramsite performance tests at different sintering temperatures
组别 温度/℃ 堆积密度/(kg·m−3) 表观密度/(kg·m−3) 1 h吸水率/% 24 h吸水率/% 筒压强度/MPa 1 1100 953.2 1823.3 6.72 6.91 1.73 2 1120 916.3 1776.5 7.65 7.73 7.63 3 1140 1170.5 2278.8 1.01 1.07 11.07 表 7 不同烧结时间下的陶粒性能
Table 7. Summary of ceramsite performance tests at different sintering times
组别 烧结时间/min 堆积密度/(kg·m−3) 表观密度/(kg·m−3) 1h吸水率/% 24h吸水率/% 筒压强度/MPa 1 10 816.2 1593.5 16.72 16.94 3.78 2 20 873.2 1650.2 9.42 9.76 5.13 3 30 916.3 1776.5 7.65 7.73 7.63 表 8 最优条件下烧结陶粒的元素组成表
Table 8. Elemental composition of sintered ceramsite under optimal conditions
/% Na2O MgO Al2O3 SiO2 P2O5 SO3 K2O CaO TiO2 MnO Fe2O3 1.776 5.214 10.673 41.916 0.433 1.283 2.411 20.597 0.727 0.199 13.565 Co3O4 CuO ZnO As2O3 Rb2O SrO Y2O3 ZrO2 BaO PbO 0.047 0.085 0.018 0.007 0.014 0.07 0.002 0.031 0.135 0.007 -
[1] 王运敏, 常前发. 当前我国铁矿尾矿的资源状况利用现状及工作方向[J]. 金属矿山, 1999(1): 1−6.
WANG Y M, CHANG Q F. The present conditions of China’s iron tailings resource and the art of state and effort direction of its utilization[J]. Metal Mine, 1999(1): 1−6.
[2] 刘鹏, 刘磊, 田馨, 等. 我国铁尾矿工艺矿物学特性及其资源化技术研究进展[J]. 矿产保护与利用, 2022(3): 169−178.
LIU P, LIU L, TIAN X, et al. Reviews of the process mineralogy characteristics and comprehensive utilization technology of iron ore tailings in China[J]. Conservation and Utilization of Mineral Resources, 2022(3): 169−178.
[3] 陈吉春, 王纲. 低硅铁尾矿的综合利用[J]. 矿产综合利用, 2003(3): 45−48. doi: 10.3969/j.issn.1000-6532.2003.03.011
CHEN J C, WANG G. The comprehensive utilization of low-silicon iron ore tailings[J]. Multipurpose Utilization of Mineral Resources, 2003(3): 45−48. doi: 10.3969/j.issn.1000-6532.2003.03.011
[4] 任明昊, 谢贤, 李博琦, 等. 铁尾矿综合利用研究进展[J]. 矿产保护与利用, 2022(3): 155−168. doi: 10.13779/j.cnki.issn1001-0076.2022.03.022
REN M H, XIE X, LI B Q, et al. Research progress on comprehensive utilization of iron tailings[J]. Conservation and Utilization of Mineral Resources, 2022(3): 155−168. doi: 10.13779/j.cnki.issn1001-0076.2022.03.022
[5] 陈永亮, 李杨, 张惠灵, 等. 高掺量低硅铁尾矿制备瓷质砖的研究[J]. 硅酸盐通报, 2016, 35(3): 927−932.
CHEN Y L, LI Y, ZHANG H L, et al. Study on preparation of porcelain tiles with high content of low-silicon iron tailings[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(3): 927−932.
[6] YANG C M, CUI C, QIN J. Recycling of low-silicon iron tailings in the production[J]. Ceramics International, 2015, 41(1): 1213−1221. doi: 10.1016/j.ceramint.2014.09.050
[7] 杜晶, 薛群虎, 刘世聚, 等. 高纯莫来石原料合成工艺研究[J]. 耐火材料, 2006(2): 114−116. doi: 10.3969/j.issn.1001-1935.2006.02.010
DU J, XUE Q H, LIU S J, et al. Study on synthesis of high purity mullite material[J]. Refractories, 2006(2): 114−116. doi: 10.3969/j.issn.1001-1935.2006.02.010
[8] 田玉明, 朱保顺, 力国民, 等. 煤矸石掺量对陶粒支撑剂性能的影响[J]. 硅酸盐学报, 2019, 47(3): 365−369.
TIAN Y M, ZHU B S, LI G M, et al. Influence of coal gangue amount on properties of ceramic proppants[J]. Journal of the Chinese Ceramic Society, 2019, 47(3): 365−369.
[9] 李晓光, 尤碧施, 高睿桐, 等. 低硅铁尾矿陶粒烧结工艺优化试验[J]. 硅酸盐通报, 2019, 38(1): 294−298. doi: 10.16552/j.cnki.issn1001-1625.2019.01.048
LI X G, YOU B S, GAO R T, et al. Optimization sintering process of ceramsite with low silicon iron tailings[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(1): 294−298. doi: 10.16552/j.cnki.issn1001-1625.2019.01.048
[10] 秦晋一, 封硕, 方姣, 等. 二氧化硅对污泥烧结陶粒结构强度和孔隙率的影响[J]. 新型建筑材料, 2019, 46(9): 117−122. doi: 10.3969/j.issn.1001-702X.2019.09.028
QIN J Y, FENG S, FANG J, et al. Effect of SiO2 on structural strength and porosity of sludge sintered ceramsite[J]. New Building Materials, 2019, 46(9): 117−122. doi: 10.3969/j.issn.1001-702X.2019.09.028
[11] 杜芳, 刘阳生. 铁尾矿烧制陶粒及其性能的研究[J]. 环境工程, 2010(S1): 369−372+402. doi: 10.13205/j.hjgc.2010.s1.003
DU F, LIU Y S. Study On Sintering of iron ore tailing for manufacturing ceramisite and its application performance[J]. Environmental Engineering, 2010(S1): 369−372+402. doi: 10.13205/j.hjgc.2010.s1.003
[12] 范晓慧, 孟君, 陈许玲, 等. 铁矿烧结中铁酸钙形成的影响因素[J]. 中南大学学报(自然科学版), 2008, 39(6): 7.
FAN X H, MENG J, CHEN X L, et al. Influence factors of calcium ferrite formation in iron ore sintering[J]. Journal of Central South University (Science and Technology), 2008, 39(6): 7.
[13] 苏立新, 吴胜利, 翟晓波, 等. 巴西某高硅铁矿粉对烧结黏结相流动性及劣质矿物的影响[J]. 中国冶金, 2020, 30(1): 18−25.
SU L X, WU S L, ZHAI X B, et al. Effect of high-silica iron ore from Brazil on fluidity and inferior minerals of sintered binding phase[J]. China Metallurgy, 2020, 30(1): 18−25.
[14] 张文兴, 黄苑龄, 张周位. 烧结矿的矿物组成和气孔特征对黏结相强度的影响[J]. 现代矿业, 2018(7): 118−121+125. doi: 10.3969/j.issn.1674-6082.2018.07.031
ZHANG W X, HUANG Y L, ZHANG Z W. Influence of sinter mineral composition and stomata characteristics on bonding phase strength[J]. Modern Mining, 2018(7): 118−121+125. doi: 10.3969/j.issn.1674-6082.2018.07.031
[15] LI X G, WANG P, GUO Z, et al. Effect of Fe2+/Fe3+ on high-strength ceramsite prepared by sintering geopolymers using iron ore tailings[J]. Ceramics International, 2022, 48(4): 5681−5688. doi: 10.1016/j.ceramint.2021.11.113
[16] QU L, WANG Y, YANG J, et al. Effect of sintering temperature on expansion process and structure characteristics of sludge ceramsite[J]. Cailiao Daobao/Materials Review, 2016, 30(3): 125−128.
[17] WANG Y, ZHU B, LI G, et al. Preparation of Fe/C/Mullite-based ceramsite composite absorbing materials by recycling solid waste coal gangue(Article)[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 238−246.
[18] 向晓东, 唐卫军, 江新卫, 等. 高强钢渣陶粒特性试验研究[J]. 矿产综合利用, 2018(1): 96−100. doi: 10.3969/j.issn.1000-6532.2018.01.021
XIANG X D, TANG W J, JIANG X W, et al. Experimental investigation of the characteristics of steel slag ceramsite[J]. Multipurpose Utilization of Mineral Resources, 2018(1): 96−100. doi: 10.3969/j.issn.1000-6532.2018.01.021
[19] 苏航, 左海滨, 赵骏. 石膏在高温下的分解脱硫研究[J]. 无机盐工业, 2019, 51(7): 68−73. doi: 10.11962/1006-4990.2018-0486
SU H, ZUO H B, ZHAO J. Desulphurization of gypsum at high temperature[J]. Inorganic Salt Industry, 2019, 51(7): 68−73. doi: 10.11962/1006-4990.2018-0486
[20] 秦晋一, 李涵, 李晓光, 等. 高Fe2O3含量对铁尾矿陶粒物相和力学性能的影响[J]. 新型建筑材料, 2019, 46(07): 83−88. doi: 10.3969/j.issn.1001-702X.2019.07.021
QIN J Y, LI H, LI X G, et al. Effect of high Fe2O3 content on phase and mechanical properties of iron tailings ceramsite[J]. New Building Materials, 2019, 46(07): 83−88. doi: 10.3969/j.issn.1001-702X.2019.07.021
[21] 吴俊权, 马晶, 汪应玲, 等. 高硅铁尾矿制备陶粒工艺试验研究[J]. 矿产保护与利用, 2020, 40(6): 126−132.
WU J Q, MA J, WANG Y L, et al. Experimental study on preparation of ceramsite with high silicon iron tailings[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 126−132.
[22] GUO X Y, LI Y Y, CHENG F Q, et al. Role of additives in improved thermal activation of coal fly ash for alumina extraction[J]. Fuel Processing Technology, 2013, 110: 114−121. doi: 10.1016/j.fuproc.2012.12.003
-