低硅铁尾矿制备轻质陶粒试验研究

李育彪, 潘梦真, 蹇守卫, 吕阳, 陈坤, 汤启宙. 低硅铁尾矿制备轻质陶粒试验研究[J]. 矿产保护与利用, 2022, 42(6): 73-80. doi: 10.13779/j.cnki.issn1001-0076.2022.06.010
引用本文: 李育彪, 潘梦真, 蹇守卫, 吕阳, 陈坤, 汤启宙. 低硅铁尾矿制备轻质陶粒试验研究[J]. 矿产保护与利用, 2022, 42(6): 73-80. doi: 10.13779/j.cnki.issn1001-0076.2022.06.010
LI Yubiao, PAN Mengzhen, JIAN Shouwei, LV Yang, CHEN Kun, TANG Qizhou. Study on Preparation of Lightweight Ceramsite with High Blending Capacity using Low Silicon Iron Tailings[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 73-80. doi: 10.13779/j.cnki.issn1001-0076.2022.06.010
Citation: LI Yubiao, PAN Mengzhen, JIAN Shouwei, LV Yang, CHEN Kun, TANG Qizhou. Study on Preparation of Lightweight Ceramsite with High Blending Capacity using Low Silicon Iron Tailings[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 73-80. doi: 10.13779/j.cnki.issn1001-0076.2022.06.010

低硅铁尾矿制备轻质陶粒试验研究

  • 基金项目: 湖北省重点研发计划项目(2020BCA077)
详细信息
    作者简介: 潘梦真(1998—),女,硕士研究生,研究方向为固废资源化及综合利用。E-mail:1114691869@qq.com
    通讯作者: 李育彪(1985—),男,博士,教授。E-mail:Yubiao.Li@whut.edu.cn
  • 中图分类号: TD926.4

Study on Preparation of Lightweight Ceramsite with High Blending Capacity using Low Silicon Iron Tailings

More Information
  • 为解决低硅铁尾矿大量堆存且利用难度大等问题,以杨家湾尾矿库低硅铁尾矿为主要原料,掺入了某铜尾矿和市售煤粉,通过烧结法制备轻质烧结陶粒,并考察了原料配比、水料比、尾矿粒度、烧结条件等因素对陶粒性能的影响。结果表明,质量配比为m(铁尾矿)∶m(铜尾矿)∶m(煤粉)=8∶1∶1(即铁尾矿掺量80%)、水料比1∶5、烧结温度1 120 ℃、烧结时间20 min的条件下制备出堆积密度为873.2 kg/m3、筒压强度5.13 MPa、1 h吸水率为7.65%的轻质陶粒,结合陶粒形貌、物相及热重分析,陶粒烧结过程中产生了起增强强度作用且呈致密网状结构的透辉石。该研究为低硅铁尾矿的资源化利用提供了新的利用途径。

  • 加载中
  • 图 1  6号点铁尾矿及铜尾矿XRD图

    Figure 1. 

    图 2  不同粒径铁尾矿陶粒照片

    Figure 2. 

    图 3  不同烧结温度的陶粒

    Figure 3. 

    图 4  不同烧结时间的陶粒

    Figure 4. 

    图 5  不同烧结温度陶粒的显微形貌

    Figure 5. 

    图 6  不同烧结时间的陶粒形貌

    Figure 6. 

    图 7  不同烧结温度和烧结时间陶粒的XRD图

    Figure 7. 

    图 8  陶粒的热分析图(TG-DSC)

    Figure 8. 

    表 1  主要原料化学成分

    Table 1.  Chemical composition of main raw materials /%

    原料SiO2CaOFe2O3Al2O3SO3K2OMgONa2OMnOTiO2
    铁尾矿335.1020.0011.9612.937.594.624.211.740.240.69
    铁尾矿625.2926.8716.269.689.632.796.960.780.30.65
    铁尾矿926.2425.9415.4010.179.522.987.320.840.290.56
    铜尾矿27.7035.7825.235.850.100.832.530.510.660.32
    下载: 导出CSV

    表 2  正交配比设计表

    Table 2.  Orthogonal ratio design table

    因素单位水平
    123
    A铁尾矿g607080
    B铜尾矿g51015
    C煤粉g0510
    下载: 导出CSV

    表 3  正交试验测试数据汇总表

    Table 3.  Summary of orthogonal test data

    试验序号因素表观密度/(kg·m−31 h吸水率/%
    ABC
    11111965.23.27
    21222054.59.73
    31332200.15.04
    42131817.116.28
    52211879.814.42
    62322220.011.71
    73122252.23.17
    83231701.513.16
    93311938.212.40
    下载: 导出CSV

    表 4  正交试验极差分析结果

    Table 4.  Range analysis results of orthogonal test

    因素指标各水平下指标的平均值(k)极差(R)较优水平
    k1k2k3
    A表观密度2073.31972.31964.0109.33
    吸水率6.0114.149.588.121
    B表观密度2011.51878.62119.4240.82
    吸水率7.5712.449.724.861
    C表观密度1927.82175.61906.7268.93
    吸水率10.038.2011.493.292
    下载: 导出CSV

    表 5  不同粒度陶粒性能测试结果

    Table 5.  Summary of ceramsite properties with different particle sizes

    组别采样点配料比堆积密度/(kg·m−3)表观密度/(kg·m−3)1 h吸水率/%24 h吸水率/%筒压强度/MPa
    138∶1∶11021.31950.117.4617.823.72
    268∶1∶1916.31776.57.657.737.63
    398∶1∶1912.01739.116.7717.282.69
    下载: 导出CSV

    表 6  不同烧结温度下的陶粒性能

    Table 6.  Summary of ceramsite performance tests at different sintering temperatures

    组别温度/℃堆积密度/(kg·m−3)表观密度/(kg·m−3)1 h吸水率/%24 h吸水率/%筒压强度/MPa
    11100953.21823.36.726.911.73
    21120916.31776.57.657.737.63
    311401170.52278.81.011.0711.07
    下载: 导出CSV

    表 7  不同烧结时间下的陶粒性能

    Table 7.  Summary of ceramsite performance tests at different sintering times

    组别烧结时间/min堆积密度/(kg·m−3)表观密度/(kg·m−3)1h吸水率/%24h吸水率/%筒压强度/MPa
    110816.21593.516.7216.943.78
    220873.21650.29.429.765.13
    330916.31776.57.657.737.63
    下载: 导出CSV

    表 8  最优条件下烧结陶粒的元素组成表

    Table 8.  Elemental composition of sintered ceramsite under optimal conditions /%

    Na2OMgOAl2O3SiO2P2O5SO3K2OCaOTiO2MnOFe2O3
    1.7765.21410.67341.9160.4331.2832.41120.5970.7270.19913.565
    Co3O4CuOZnOAs2O3Rb2OSrOY2O3ZrO2BaOPbO
    0.0470.0850.0180.0070.0140.070.0020.0310.1350.007
    下载: 导出CSV
  • [1]

    王运敏, 常前发. 当前我国铁矿尾矿的资源状况利用现状及工作方向[J]. 金属矿山, 1999(1): 1−6.

    WANG Y M, CHANG Q F. The present conditions of China’s iron tailings resource and the art of state and effort direction of its utilization[J]. Metal Mine, 1999(1): 1−6.

    [2]

    刘鹏, 刘磊, 田馨, 等. 我国铁尾矿工艺矿物学特性及其资源化技术研究进展[J]. 矿产保护与利用, 2022(3): 169−178.

    LIU P, LIU L, TIAN X, et al. Reviews of the process mineralogy characteristics and comprehensive utilization technology of iron ore tailings in China[J]. Conservation and Utilization of Mineral Resources, 2022(3): 169−178.

    [3]

    陈吉春, 王纲. 低硅铁尾矿的综合利用[J]. 矿产综合利用, 2003(3): 45−48. doi: 10.3969/j.issn.1000-6532.2003.03.011

    CHEN J C, WANG G. The comprehensive utilization of low-silicon iron ore tailings[J]. Multipurpose Utilization of Mineral Resources, 2003(3): 45−48. doi: 10.3969/j.issn.1000-6532.2003.03.011

    [4]

    任明昊, 谢贤, 李博琦, 等. 铁尾矿综合利用研究进展[J]. 矿产保护与利用, 2022(3): 155−168. doi: 10.13779/j.cnki.issn1001-0076.2022.03.022

    REN M H, XIE X, LI B Q, et al. Research progress on comprehensive utilization of iron tailings[J]. Conservation and Utilization of Mineral Resources, 2022(3): 155−168. doi: 10.13779/j.cnki.issn1001-0076.2022.03.022

    [5]

    陈永亮, 李杨, 张惠灵, 等. 高掺量低硅铁尾矿制备瓷质砖的研究[J]. 硅酸盐通报, 2016, 35(3): 927−932.

    CHEN Y L, LI Y, ZHANG H L, et al. Study on preparation of porcelain tiles with high content of low-silicon iron tailings[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(3): 927−932.

    [6]

    YANG C M, CUI C, QIN J. Recycling of low-silicon iron tailings in the production[J]. Ceramics International, 2015, 41(1): 1213−1221. doi: 10.1016/j.ceramint.2014.09.050

    [7]

    杜晶, 薛群虎, 刘世聚, 等. 高纯莫来石原料合成工艺研究[J]. 耐火材料, 2006(2): 114−116. doi: 10.3969/j.issn.1001-1935.2006.02.010

    DU J, XUE Q H, LIU S J, et al. Study on synthesis of high purity mullite material[J]. Refractories, 2006(2): 114−116. doi: 10.3969/j.issn.1001-1935.2006.02.010

    [8]

    田玉明, 朱保顺, 力国民, 等. 煤矸石掺量对陶粒支撑剂性能的影响[J]. 硅酸盐学报, 2019, 47(3): 365−369.

    TIAN Y M, ZHU B S, LI G M, et al. Influence of coal gangue amount on properties of ceramic proppants[J]. Journal of the Chinese Ceramic Society, 2019, 47(3): 365−369.

    [9]

    李晓光, 尤碧施, 高睿桐, 等. 低硅铁尾矿陶粒烧结工艺优化试验[J]. 硅酸盐通报, 2019, 38(1): 294−298. doi: 10.16552/j.cnki.issn1001-1625.2019.01.048

    LI X G, YOU B S, GAO R T, et al. Optimization sintering process of ceramsite with low silicon iron tailings[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(1): 294−298. doi: 10.16552/j.cnki.issn1001-1625.2019.01.048

    [10]

    秦晋一, 封硕, 方姣, 等. 二氧化硅对污泥烧结陶粒结构强度和孔隙率的影响[J]. 新型建筑材料, 2019, 46(9): 117−122. doi: 10.3969/j.issn.1001-702X.2019.09.028

    QIN J Y, FENG S, FANG J, et al. Effect of SiO2 on structural strength and porosity of sludge sintered ceramsite[J]. New Building Materials, 2019, 46(9): 117−122. doi: 10.3969/j.issn.1001-702X.2019.09.028

    [11]

    杜芳, 刘阳生. 铁尾矿烧制陶粒及其性能的研究[J]. 环境工程, 2010(S1): 369−372+402. doi: 10.13205/j.hjgc.2010.s1.003

    DU F, LIU Y S. Study On Sintering of iron ore tailing for manufacturing ceramisite and its application performance[J]. Environmental Engineering, 2010(S1): 369−372+402. doi: 10.13205/j.hjgc.2010.s1.003

    [12]

    范晓慧, 孟君, 陈许玲, 等. 铁矿烧结中铁酸钙形成的影响因素[J]. 中南大学学报(自然科学版), 2008, 39(6): 7.

    FAN X H, MENG J, CHEN X L, et al. Influence factors of calcium ferrite formation in iron ore sintering[J]. Journal of Central South University (Science and Technology), 2008, 39(6): 7.

    [13]

    苏立新, 吴胜利, 翟晓波, 等. 巴西某高硅铁矿粉对烧结黏结相流动性及劣质矿物的影响[J]. 中国冶金, 2020, 30(1): 18−25.

    SU L X, WU S L, ZHAI X B, et al. Effect of high-silica iron ore from Brazil on fluidity and inferior minerals of sintered binding phase[J]. China Metallurgy, 2020, 30(1): 18−25.

    [14]

    张文兴, 黄苑龄, 张周位. 烧结矿的矿物组成和气孔特征对黏结相强度的影响[J]. 现代矿业, 2018(7): 118−121+125. doi: 10.3969/j.issn.1674-6082.2018.07.031

    ZHANG W X, HUANG Y L, ZHANG Z W. Influence of sinter mineral composition and stomata characteristics on bonding phase strength[J]. Modern Mining, 2018(7): 118−121+125. doi: 10.3969/j.issn.1674-6082.2018.07.031

    [15]

    LI X G, WANG P, GUO Z, et al. Effect of Fe2+/Fe3+ on high-strength ceramsite prepared by sintering geopolymers using iron ore tailings[J]. Ceramics International, 2022, 48(4): 5681−5688. doi: 10.1016/j.ceramint.2021.11.113

    [16]

    QU L, WANG Y, YANG J, et al. Effect of sintering temperature on expansion process and structure characteristics of sludge ceramsite[J]. Cailiao Daobao/Materials Review, 2016, 30(3): 125−128.

    [17]

    WANG Y, ZHU B, LI G, et al. Preparation of Fe/C/Mullite-based ceramsite composite absorbing materials by recycling solid waste coal gangue(Article)[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 238−246.

    [18]

    向晓东, 唐卫军, 江新卫, 等. 高强钢渣陶粒特性试验研究[J]. 矿产综合利用, 2018(1): 96−100. doi: 10.3969/j.issn.1000-6532.2018.01.021

    XIANG X D, TANG W J, JIANG X W, et al. Experimental investigation of the characteristics of steel slag ceramsite[J]. Multipurpose Utilization of Mineral Resources, 2018(1): 96−100. doi: 10.3969/j.issn.1000-6532.2018.01.021

    [19]

    苏航, 左海滨, 赵骏. 石膏在高温下的分解脱硫研究[J]. 无机盐工业, 2019, 51(7): 68−73. doi: 10.11962/1006-4990.2018-0486

    SU H, ZUO H B, ZHAO J. Desulphurization of gypsum at high temperature[J]. Inorganic Salt Industry, 2019, 51(7): 68−73. doi: 10.11962/1006-4990.2018-0486

    [20]

    秦晋一, 李涵, 李晓光, 等. 高Fe2O3含量对铁尾矿陶粒物相和力学性能的影响[J]. 新型建筑材料, 2019, 46(07): 83−88. doi: 10.3969/j.issn.1001-702X.2019.07.021

    QIN J Y, LI H, LI X G, et al. Effect of high Fe2O3 content on phase and mechanical properties of iron tailings ceramsite[J]. New Building Materials, 2019, 46(07): 83−88. doi: 10.3969/j.issn.1001-702X.2019.07.021

    [21]

    吴俊权, 马晶, 汪应玲, 等. 高硅铁尾矿制备陶粒工艺试验研究[J]. 矿产保护与利用, 2020, 40(6): 126−132.

    WU J Q, MA J, WANG Y L, et al. Experimental study on preparation of ceramsite with high silicon iron tailings[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 126−132.

    [22]

    GUO X Y, LI Y Y, CHENG F Q, et al. Role of additives in improved thermal activation of coal fly ash for alumina extraction[J]. Fuel Processing Technology, 2013, 110: 114−121. doi: 10.1016/j.fuproc.2012.12.003

  • 加载中

(8)

(8)

计量
  • 文章访问数:  221
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2022-06-28
刊出日期:  2022-12-26

目录