低硅铁尾矿制备抹面砂浆试验研究

李鹏飞, 李育彪, 李超前, 陈坤, 汤启宙, 吴晓勇. 低硅铁尾矿制备抹面砂浆试验研究[J]. 矿产保护与利用, 2022, 42(6): 81-88. doi: 10.13779/j.cnki.issn1001-0076.2022.06.011
引用本文: 李鹏飞, 李育彪, 李超前, 陈坤, 汤启宙, 吴晓勇. 低硅铁尾矿制备抹面砂浆试验研究[J]. 矿产保护与利用, 2022, 42(6): 81-88. doi: 10.13779/j.cnki.issn1001-0076.2022.06.011
LI Pengfei, LI Yubiao, LI Chaoqian, CHEN Kun, TANG Qizhou, WU Xiaoyong. Preparation of Plastering Mortar from Low-silicon Iron Tailings[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 81-88. doi: 10.13779/j.cnki.issn1001-0076.2022.06.011
Citation: LI Pengfei, LI Yubiao, LI Chaoqian, CHEN Kun, TANG Qizhou, WU Xiaoyong. Preparation of Plastering Mortar from Low-silicon Iron Tailings[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 81-88. doi: 10.13779/j.cnki.issn1001-0076.2022.06.011

低硅铁尾矿制备抹面砂浆试验研究

  • 基金项目: 国家自然科学基金项目(51974215)
详细信息
    作者简介: 李鹏飞(1985—),男,河北元氏人,工程师,主要从事选矿管理工作,E-mail:358512150@qq.com
    通讯作者: 李育彪(1985—),男,湖北武汉人,教授,主要从事矿产综合利用研究,Email:yubiao.li@whut.edu.cn
  • 中图分类号: TD926.4

Preparation of Plastering Mortar from Low-silicon Iron Tailings

More Information
  • 抹面砂浆用于涂抹在建筑物或建筑构件表面,起到保护墙体的作用,提高防潮、防腐蚀、抗风化性能,增加耐久性;同时可使建筑达到表面平整、清洁和美观的效果。武钢资源集团程潮矿业有限公司杨家湾尾矿坝低硅铁尾矿堆存量巨大、利用难度高,以该低硅铁尾矿为原料,通过添加水泥和外加剂利用水化反应机理制备抹面砂浆,探究了水胶比、胶砂比、可再分散乳胶粉用量、纤维素醚用量等因素对抹面砂浆性能的影响,并在水胶比为0.8、可再分散乳胶粉用量1.67%、羟丙基甲基纤维素醚用量0.6%、引气剂用量0.06%、铁尾矿质量分数为71.4%(胶砂比1/2.5)的高掺量条件下制备出和易性较好、稠度和凝结时间合适、抗压强度为M5等级、满足《GB/T 25181—2019 预拌砂浆》的铁尾矿抹面砂浆,为低硅铁尾矿的资源化利用提供了一条有效利用途径。

  • 加载中
  • 图 1  铁尾矿XRD图谱

    Figure 1. 

    图 2  水胶比对抹面砂浆28 d抗压强度的影响

    Figure 2. 

    图 3  胶砂比对抹面砂浆28 d抗压强度的影响

    Figure 3. 

    图 4  可再分散乳胶粉掺量对抹面砂浆28 d抗压强度的影响

    Figure 4. 

    图 5  羟丙基甲基纤维素醚掺量对抹面砂浆28 d抗压强度的影响

    Figure 5. 

    图 6  引气剂掺量对抹面砂浆28 d抗压强度的影响

    Figure 6. 

    表 1  铁尾矿各粒级含量

    Table 1.  Content of iron tailings by particle size

    粒级/目+4−4+8−8+16−16+32−32+50−50+100−100+200−200+325−325+400−400
    含量/%2.125.523.628.9215.2616.4024.605.812.0615.69
    下载: 导出CSV

    表 2  铁尾矿XRF分析结果

    Table 2.  XRF results of iron tailings /%

    成分SiO2Al2O3CaOFe2O3TFeSO3Na2OK2OMgOMnONiO
    含量35.1012.9320.0011.968.377.591.744.624.210.240.02
    成分P2O5PbORb2OSrOTiO2ZnOZrO2BaOCo2O3CuOGa2O3
    含量0.220.020.040.170.690.050.060.210.050.060.01
    下载: 导出CSV

    表 3  铁尾矿石粉含量测试结果

    Table 3.  Test results for stone dust content of iron tailings

    样品MB(亚甲蓝值)/(g·kg−1)MB标准值/(g·kg−1)−75 μm含量/%
    铁尾矿0.51.412.48
    下载: 导出CSV

    表 4  水胶比对抹面砂浆性能的影响

    Table 4.  Effect of water-binder ratio on the performance of plastering mortars

    编号水胶比稠度/mm保水率/%凝结时间/min和易性
    初凝终凝
    1-11.00115>99420720较好
    1-20.95110>99420720较好
    1-30.90103>99420720较好
    1-40.8595>99390690合适
    1-50.8090>99390690合适
    1-60.7583>99390660合适
    下载: 导出CSV

    表 5  胶砂比对抹面砂浆性能影响

    Table 5.  Effects of binder -sand ratio on the performance of plastering mortars

    编号胶砂比稠度/mm保水率/%凝结时间/min和易性
    初凝终凝
    2-11/2.590>99390690较好
    2-21/3.084>99420720较好
    2-31/3.571>99420720较好
    2-41/4.053>99420720合适
    下载: 导出CSV

    表 6  可再分散乳胶粉掺量对抹面砂浆性能的影响

    Table 6.  Effects of dispersible emulsion powder dosage on the performance of plastering mortar

    编号可再分散
    乳胶粉掺量/%
    稠度/mm保水率/%凝结时间/min和易性
    初凝终凝
    3-1193>99390660较差
    3-21.3392>99390690较差
    3-31.6794>99390690合适
    3-42.095>99390690合适
    3-52.33101>99420720合适
    3-62.67103>99420720较好
    下载: 导出CSV

    表 7  羟丙基甲基纤维素醚掺量对新拌抹面砂浆性能的影响

    Table 7.  Effects of HPMC dosage on the properties of freshly mixed plastered mortar

    编号纤维素醚
    掺量/%
    稠度/mm保水率/%凝结时间/min和易性
    初凝终凝
    4-10.293>99390690较差
    4-20.492>99420720较差
    4-30.693>99420720较好
    4-40.893>99450690较好
    4-51.095>99450720合适
    4-61.294>99480720合适
    下载: 导出CSV

    表 8  混凝土引气剂掺量对新拌抹面砂浆性能的影响

    Table 8.  Effects of concrete air-entraining agent dosage on the performance of freshly mixed plastered mortar

    编号引气剂/%稠度/mm保水率/%凝结时间/min和易性
    初凝终凝
    5-10.0285>99390690粘刀
    5-20.0495>99420720粘刀
    5-30.0696>99420720合适
    5-40.0898>99450690合适
    5-50.1096>99450720合适
    5-60.1297>99480720合适
    下载: 导出CSV
  • [1]

    陈永亮. 鄂西低硅铁尾矿烧结制砖及机理研究[D]. 武汉: 武汉科技大学, 2012.

    CHEN Y L. Preparation and mechanism of fired bricks and tiles with low-silicon iron tailings from wtbesern huel [D]. Wuhan: Wuhan University of Science and Technology, 2012.

    [2]

    卢瑞桢, 甘敏, 林欣威. 矿山尾矿资源综合利用现状及前景分析[J]. 现代矿业, 2020, 36(12): 5−7.

    LU R Z, GAN M, LIN X W. Current situations and prospect analysis discussion of mines tailings comprehensive utilization[J]. Modern Mining, 2020, 36(12): 5−7.

    [3]

    范敦城. 齐大山铁尾矿预富集—深度还原提铁及尾渣综合利用研究[D]. 北京: 北京科技大学, 2018.

    FAN D C. Research on pre-concentration and deep reduction of Qidashan iron ore tailings and the comprehensive utilization of tailings [D]. Beijing: University of Science and Technology Beijing, 2018.

    [4]

    张彪, 姜春志. 铁尾矿资源综合利用及研究进展[J]. 中国金属通报, 2020(21): 68−69.

    ZHANG B, JIANG C Z. Comprehensive utilization and research progress of iron tailings resources[J]. China Metal Bulletin, 2020(21): 68−69.

    [5]

    赵云良. 低硅铁尾矿制备蒸压砖技术及机理研究[D]. 武汉: 武汉理工大学, 2012.

    ZHAO Y L. Preparation technology and mechanism of autoclaved bricks made from low silicon iron tailings [D]. Wuhan: Wuhan University of Technology, 2012.

    [6]

    王长龙, 倪文, 李德忠, 等. 山西灵丘低硅铁尾矿制备加气混凝土的试验研究[J]. 煤炭学报, 2012(7): 1129−1133.

    WANG C L, NI W, LI D Z, et al. Experimental study of using Shanxi Lingqiu low-silica iron ore tailings to produce aerated concrete[J]. Chinese Journal of Coal, 2012(7): 1129−1133.

    [7]

    王德民, 雷国元, 宋均平, 等. 低硅铁尾矿陶粒的制备与应用[J]. 金属矿山, 2013(9): 163−166.

    WANG D M, LEI G Y, SONG J P, et al. Preparation and utilization of ceramsite made of low silica iron tailings[J]. Metal Mine, 2013(9): 163−166.

    [8]

    王德民, 胡百昌, 储腾跃, 等. 低硅铁尾矿制备建筑陶粒及其性能研究[J]. 新型建筑材料, 2016(2): 36−38.

    WANG D M, HU B C, CHU T Y, et al. Study on preparation and performances of building ceramisite with low silica iron tailings[J]. New Building Materials, 2016(2): 36−38.

    [9]

    陈晓玲. 低硅铁尾矿制微晶玻璃的试验研究[J]. 矿产综合利用, 2011(5): 41−44.

    CHEN X L. Experimental research on preparation of glass-ceramics using low-silicon iron tailings[J]. Multipurpose Utilization of Mineral Resources, 2011(5): 41−44.

    [10]

    彭小芹, 兰聪, 王淑萍, 等. 水化硅酸钙粉体对水泥水化反应过程及机理的影响[J]. 建筑材料学报, 2015, 18(2): 195−201.

    PENG X Q, LAN C, WANG S P, et al. Effects of the C-S-H powder on the hydration process and mechanism of cement[J]. Journal of Building Materials, 2015, 18(2): 195−201.

    [11]

    郭磊. 水泥水化反应研究与进展[J]. 商品与质量, 2019(23): 252.

    GUO L. Research and progress of cement hydration reaction[J]. The journal quality of goods, 2019(23): 252.

    [12]

    严子伟, 刘黎, 孙晋峰, 等. 铝酸三钙和碳酸钙对硅酸盐水泥早期力学强度及凝结时间的协同作用研究[J]. 硅酸盐通报, 2021, 40(5): 1470−1476.

    YAN Z W, LIU L, SUN J F, et al. Synergistic effect of tricalcium aluminate and calcium carbonate on early mechanical strength and setting time of portland cement[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(5): 1470−1476.

    [13]

    X. C, R. FAcrylic Powder modified portland cement[J]. Cement, Concrete and Aggregates, 1995, 17(2): 218−226.

    [14]

    PHAN V. Relationship between the adhesive properties and the rheological behavior of fresh mortars[D]. Ecole Normale Superieure de Cachan, 2012.

    [15]

    张国防, 王培铭. E/VC/VL三元共聚物对水泥砂浆孔结构和性能的影响[J]. 建筑材料学报, 2013, 16(1): 111−114.

    ZHANG G F, WANG P M. Effects of ethylene/vinyl chloride/vinyl laurate redispersible terpolymer on pore structure and properties of cement mortar[J]. Journal of Building Materials, 2013, 16(1): 111−114.

    [16]

    王培铭, 赵国荣, 张国防. 可再分散乳胶粉在水泥砂浆中的作用机理[J]. 硅酸盐学报, 2018(2): 256−262.

    WANG P M, ZHAO G R, ZHANG G F. Mechanism of redispersible polymer powder in cement mortar[J]. Journal of the Chinese Ceramic Society, 2018(2): 256−262.

    [17]

    李玉海. “增粘剂”对纤维素醚在砂浆中应用性能的影响初探[J]. 新型建筑材料, 2018, 45(3): 97−100.

    LI Y H. Discussion on effect of thickener to the application performance of cellulose ether in mortar[J]. New Building Materials, 2018, 45(3): 97−100.

    [18]

    王培铭, 赵国荣, 张国防. 纤维素醚在新拌砂浆中保水增稠作用及其机理[J]. 硅酸盐学报, 2017, 45(8): 1190−1196.

    WANG P M, ZHAO G R, ZHANG G F. Mechanism on Water Retention and Thickening of cellulose ethers in fresh mortars[J]. Journal of the Chinese Ceramic Society, 2017, 45(8): 1190−1196.

    [19]

    闫孝伟. 新型湿拌砂浆外加剂的研究[J]. 四川建材, 2019, 45(7): 19−21.

    YAN X W. Study onnew wet mixed mortar admixture[J]. Sichuan Building Materials, 2019, 45(7): 19−21.

    [20]

    熊犍, 康兰艳, 叶君. 纤维素醚在干混砂浆中的应用进展[J]. 化工进展, 2009(6): 1043−1046.

    XIONG J, KANG L Y, YE J. Progress in the application of cellulose ethers for dry-mixed mortar[J]. Chemical Industry and Engineering Progress, 2009(6): 1043−1046.

    [21]

    李玉海, 贺平. 纤维素醚表面改性对瓷砖胶拉伸胶粘强度的影响[J]. 新型建筑材料, 2015, 42(4): 81−83.

    LI Y H, HE P. Effect of cellulose ethers surface treatment on bonding strength of tile adhesive[J]. New Building Materials, 2015, 42(4): 81−83.

    [22]

    柳京育, 单俊鸿, 李春, 等. 脱硫石膏基无砂自流平砂浆的制备与性能研究[J]. 硅酸盐通报, 2021, 40(11): 3654−3661.

    LIU J Y, SHAN J H, LI C, et al. Preparation and performance of desulphurized gypsum-based sandless self-leveling mortar[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(11): 3654−3661.

    [23]

    李连勇, 岳建伟, 来强. 外墙保温抗裂砂浆性能试验研究[J]. 河南大学学报(自然科学版), 2011, 41(2): 214−216.

    LI L Y, YUE J W, LAI Q. Test on anti-crack mortar for exterior wall thermal insulation[J]. Journal of Henan University(Natural Science), 2011, 41(2): 214−216.

    [24]

    戴民, 魏征, 李秀. 聚合物砂浆保水性研究[J]. 混凝土, 2015(7): 128−130.

    DAI M, WEI Z, LI X. Performance of high water retention of cement mortar[J]. Concrete, 2015(7): 128−130.

    [25]

    权娟娟, 王宁, 郭增辉, 等. 引气剂对新拌砂浆性能的影响研究[J]. 硅酸盐通报, 2015, 34(9): 2681−2685.

    QUAN J J, WANG N, GUO Z H, et al. Effect of air-entraining agent on the properties of fresh morta[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(9): 2681−2685.

    [26]

    肖力光, 李根壮, 蒋大伟. 引气剂对火山渣干混保温砌筑砂浆性能的影响[J]. 新型建筑材料, 2019, 46(4): 73−76.

    XIAO L G, LI G Z, JIANG D W. Effect of air entraining agent on performance of volcanic slag dry-mixed thermal insulation masonry mortar[J]. New Building Materials, 2019, 46(4): 73−76.

    [27]

    任崴峣, 柯国炬, 何晓雁, 等. 基于表面张力和温度的引气剂和引气水泥砂浆性能研究[J]. 硅酸盐通报, 2015, 34(2): 331−334.

    REN W Y, KE G J, HE X Y, et al. Property research on air-entraining agent and air-entrained cement mortar based on surface tension and temperature[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(2): 331−334.

    [28]

    范树景, 王培铭. 引气剂对玻化微珠保温砂浆长期干燥收缩的影响[J]. 建筑材料学报, 2016, 19(1): 1−7.

    FAN S J, WANG P M. Effect of air entraining agents on the long-term drying shrinkage of glazed hollow beads thermal insulation mortar[J]. Journal of Building Materials, 2016, 19(1): 1−7.

    [29]

    冯晓乔, 虞爱平. 掺引气剂和聚氨酯混合砂浆保温隔热性能试验研究[J]. 新型建筑材料, 2020, 47(5): 108−111.

    FENG X Q, YU A P. Experimental study on thermal insulation performance of polyurethane mixed mortar mixed with air entraining agent[J]. New Building Materials, 2020, 47(5): 108−111.

    [30]

    朱绘美, 王培铭, 张国防. 引气剂对水泥基饰面砂浆泛白的影响及其机理[J]. 建筑材料学报, 2017, 20(1): 1−6.

    ZHU H M, WANG P M, ZHANG G F. Effect of air entraining agent on efflorescence of cement-based decorative mortar and its mechanism[J]. Journal of Building Materials, 2017, 20(1): 1−6.

  • 加载中

(6)

(8)

计量
  • 文章访问数:  71
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2022-06-28
刊出日期:  2022-12-26

目录