Occurrence State and Potential Recycling Evaluation of Lithium from Fluorite Tailings
-
摘要:
对浙江某萤石尾矿中锂的赋存状态开展详细的研究,并对锂的回收潜力进行评价。工艺矿物学研究表明,尾矿中的含锂矿物为铁锂云母、白云母和金云母,三类云母矿物中的平均锂含量分别为4.16%、0.47%和0.51%,其中62.82%分布于铁锂云母中,故要重点加强对铁锂云母的分选。但由于白云母、金云母与铁锂云母的浮游性能相似,在浮选过程中将一并进入到锂云母精矿,导致云母精矿Li2O品位偏低而无法得到合格的产品。但是可以采用强磁选法从云母精矿中分离出合格的铁锂云母精矿。也可以采用强磁选法处理给矿,将铁锂云母、褐铁矿和软锰矿分选到磁性产品中,然后用阳离子浮选法从磁性产品中浮选得到铁锂云母精矿。采用浮选—磁选法技术或和磁选—浮选法需通过选矿试验进一步确定。
Abstract:The occurrence state of lithium in fluorite tailings in Zhejiang was studied while the availability of lithium recovery was evaluated. The process mineralogy research revealed that lithium mainly existed in zinnwaldite, muscovite, and phlogopite, and the average lithium contents in the three types of mica minerals were 4.16%, 0.47% and 0.51%, respectively, and 62.47% of lithium was distributed in zinnwaldite which should be strengthened. However, due to the similar flotation performance of zinnwaldite, muscovite, and phlogopite, the flotation process results in the co-enrichment of these minerals, making it difficult to obtain a high-quality lithium concentrate. Nonetheless, qualified iron lithium mica concentrate can be separated from mica concentrate by high intensity magnetic separation. In addition, the technique can also be used to treat the ore by separating zinnwaldite, limonite and pyrolusite into magnetic products, followed by cationic flotation to obtain an iron-limonite concentrate. Overall, the technical index for either flotation-magnetic separation or magnetic separation-flotation requires further testing to determine its efficacy.
-
Key words:
- fluorite tailings /
- process mineralogy /
- zinnwaldite /
- occurrence state /
- recycling potential
-
-
表 1 矿样的化学分析结果
Table 1. Chemical analysis results of the ore samples
/% 成分 Li2O BeO Fe S Ca CaF2 SiO2 含量 0.52 0.26 4.07 0.22 13.55 22.60 28.11 成分 Al2O3 MgO K2O Na2O MnO Rb2O C 含量 20.88 2.80 5.23 0.58 0.93 0.24 0.55 表 2 矿样的主要矿物含量
Table 2. Major mineral composition of the ore samples
/% 矿物名称 矿物含量 矿物名称 矿物含量 萤石 22.6 褐铁矿、软锰矿 5.55 铁锂云母 7.91 白云石、方解石 6.63 白云母 26.22 石英 5.18 金云母 14.03 高岭石 4.59 羟硅铍石 0.77 其他 6.52 表 3 Li2O在不同矿物中的分布率
Table 3. The distribution of Li2O in various minerals
/% 矿物名称 矿物含量 矿物中Li2O含量 Li2O分布率 铁锂云母 7.91 4.16 62.82 白云母 26.22 0.47 23.52 金云母 14.03 0.51 13.66 合计 48.16 1.09 100.00 表 4 样品中含锂矿物粒度组成
Table 4. Grain size distribution of lithium-bearing minerals in the ore
/% 粒级/mm 铁锂云母 白云母 金云母 云母矿物集合体 含量 累积 含量 累积 含量 累积 含量 累积 +0.295 1.27 1.27 1.59 1.59 1.75 1.75 −0.295+0.208 8.53 9.80 3.24 4.83 4.25 4.25 6.38 8.13 −0.208+0.147 4.29 14.09 7.06 11.89 8.91 13.16 9.12 17.25 −0.147+0.104 10.11 24.20 8.26 20.15 6.35 19.51 8.03 25.28 −0.104+0.074 12.05 36.25 14.68 34.83 11.61 31.12 13.68 38.96 −0.074+0.043 20.63 56.88 17.11 51.94 19.41 50.53 18.32 57.28 −0.043+0.020 22.02 78.90 18.62 70.56 21.57 72.10 19.98 77.26 −0.020+0.015 9.88 88.78 10.96 81.52 15.06 87.16 10.99 88.25 −0.015+0.010 6.85 95.63 9.99 91.51 8.36 95.52 8.03 96.28 −0.010 4.37 100.00 8.49 100.00 4.48 100.00 3.72 100.00 表 5 样品中含锂矿物的解离度
Table 5. The liberation of lithium-bearing minerals in the ore
/% 矿物名称 单体 连生体 云母集合体 85.22 14.78 铁锂云母 81.64 18.36 白云母 80.02 19.98 金云母 74.45 25.55 -
[1] 王秋舒, 元春华. 全球锂矿供应形势及我国资源安全保障建议[J]. 中国矿业, 2019, 28(5): 1−6.
WANG Q S, YUAN C H. The global supply situation of lithium ore and suggestions on resources security in China[J]. China Mining Magazine, 2019, 28(5): 1−6.
[2] 杨卉芃, 柳林, 丁国峰. 全球锂矿资源现状及发展趋势[J]. 矿产保护与利用, 2019, 39(5): 26−40. doi: 10.13779/j.cnki.issn1001-0076.2019.05.004
YANG H P, LIU L, DING G F. Present situation and development trend of lithium resources in the world[J]. Conservation and Utilization of Mineral Resources, 2019, 39(5): 26−40. doi: 10.13779/j.cnki.issn1001-0076.2019.05.004
[3] Choubey K, Kim M, Srivastava R, et al. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources[J]. Minerals Engineering, 2016(89): 119−137.
[4] 屈金芝, 张艳松, 张艳, 等. 新形势下中国锂矿资源供应安全评价[J]. 中国矿业, 2021, 30(12): 1−7.
QU J Z, ZHANG Y S, ZHANG Y , et al. Safety evaluation of lithium resources supply in china under the new situation[J]. China Mining Magazine, 2021, 30(12): 1−7.
[5] 吕江涛. 为“锂”走遍天下 锂矿全球争夺战[J]. 中国经济周刊, 2021(21): 66−68.
LV J T. Worldwide battle for lithium[J]. China Economic Weekly, 2021(21): 66−68.
[6] 马玉宏, 石晶. 理性看待碳酸锂价格上涨[N]. 经济日报, 2022-01-30(005).
MA Y H, SHI J. Rational View on Lithium Carbonate Price Rise[N], Economic Daily, 2022-01-30(005).
[7] 张宏泉, 文进, 童慧, 等. 锂尾矿资源化再利用现状与前景[J]. 陶瓷, 2021(3): 46−49.
ZHANG H Q, WEN J, TONG H , et al. Resource reuse status and prospect of lithium tailings[J]. Ceramics, 2021(3): 46−49.
[8] 曹学锋, 张荥斐, 骆任, 等. 国外某萤石矿尾矿中锂铷回收试验[J]. 金属矿山, 2019(1): 201−203.
CAO X F, ZHANG X F, LUO R, et al. Experiment on Recovery of Lithium Rubidium from a Fluorite Tailings Abroad[J]. Metal Mine, 2019(1): 201−203.
[9] 王威, 常学勇, 柳林, 等. 赣州某钨尾矿中锂的浮选回收与浸出试验[J]. 金属矿山, 2018(11): 185−188.
WANG W, CHANG X Y, LIU L, et al. Experiment of Flotation Recovery and Leaching of Lithium from a Tungsten Tailings in Ganzhou[J]. Metal Mine, 2018(11): 185−188.
[10] 吴西顺, 孙艳, 王登红, 等. 国际锂矿开发的技术现状、革新及展望[J]. 矿产综合利用, 2020(6): 110−120.
WU X S, SUN Y, WANG D H, et al. Technology status, innovation and prospects of international lithium mine development[J]. Comprehensive Utilization of Mineral Resources, 2020(6): 110−120.
[11] 黄莉, 李芳琴, 代涛, 等. 锂金属回收潜力研究−基于现有回收技术与工艺[J]. 矿产保护与利用, 2021, 41(5): 31−37.
HUANG L, LI F Q, DAI T, et al. Recycling potential assessment of lithium metal——based on existing recycling technology and process[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 31−37.
[12] 孙传尧. 选矿工程师手册[M]. 北京: 冶金工业出版社, 2015: 117.
SUN C Y. Mineral processing engineer, s handbook[M]. Beijing: Metallurgical Industry Press, 2015: 117.
[13] 李少平, 张俊敏, 迪里努尔·阿不都卡得, 等. 锂云母浮选捕收剂研究现状及展望[J]. 矿产保护与利用, 2020, 40(6): 77−82.
LI S P, ZHANG J M, DILINUER A, et al. Research status and prospect of lepidolite flotation collectors[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 77−82.
[14] 刘书杰, 王中明. 某长石尾矿中含铷云母的浮选回收试验研究[J]. 矿冶, 2019, 28(5): 38−43.
LIU S J, WANG Z M. Experimental study on flotation recovery of rubidium mica from a feldspar tailings[J]. Ming Metallurgy, 2019, 28(5): 38−43.
[15] 《矿产资源工业要求手册》编委会编. 矿产资源工业要求手册[M]. 北京: 地质出版社, 2010.
“Mineral resources industry requires manual” editorial board. Mineral resources industry requirements handbook [M]. Beijing: 2010.
-