Experimental Study on Comprehensive Recovery of Quartz and Feldspar from a Tailings of Tungsten and Tin Gravity Separation in Jiangxi
-
摘要:
针对江西某钨锡重选尾矿中石英、长石、云母含量高的特点,试验采用磨矿—磁选除铁—脱泥—云母浮选—石英与长石浮选分离的无氟少酸工艺综合回收石英和长石。在试样磨矿细度−0.074 mm含量占73.20%、磁场强度为1.0 T条件下进行磁选除铁,非磁性产品采用静置—虹吸方法脱去−0.020 mm细泥。磨矿—磁选—脱泥等预处理后的样品采用碳酸钠调整矿浆pH=10.5、捕收剂YF-1用量240 g/t 和十二胺用量80 g/t 联合浮选云母。对云母浮选尾矿以Ba2+用量120 g/t活化石英、YF-2用量250 g/t 抑制长石、捕收剂YF-1用量250 g/t 进行石英与长石的浮选分离。石英浮选尾矿即为长石精矿 ,石英精矿通过酸法反浮选长石工艺得到石英精矿和长石副产品。试验获得石英精矿产率25.30%,SiO2含量99.20%,石英矿物回收率50%;长石精矿产率22.69%,K2O+Na2O含量13.16%,长石副产品产率7.68%,K2O+Na2O含量9.23%,长石矿物总回收率约79%;云母精矿产率14.50%,K2O含量7.65%,Na2O含量1.65%,Al2O3 含量16.40%,云母矿物回收率85%。
Abstract:According to the characteristics of high content of quartz, feldspar and mica in the tailings of tungsten and tin gravity separation from Jiangxi Province, a fluoride-free and less acid process of grinding-iron removal by magnetic separation-desliming-mica floatation-quartz and feldspar flotation separation was adopted to comprehensively recover quartz and feldspar. Magnetic separation was carried out with the sample grinding fineness of −0.074 mm content 73% and the magnetic field intensity of 1.0 T, following the fine mud of −0.020 mm removed by static-siphon method for non-magnetic products. Furthermore, the mica was floated using a combination of YF-1 (240 g/t) and dodecylamine (80 g/t) as collectors while the slurry pH was adjusted to 10.5 by Na2CO3. Subsequently, quartz and feldspar were separated from mica flotation tailings using Ba2+ as the activator of quartz (120 g/t), YF-2 as the inhibitor of feldspar (250 g/t), and YF-1 as the collector (250 g/t). The flotation tailings was feldspar concentrate, and the flotation concentrate was further separated to obtain the quartz concentrate and feldspar by-products by reverse flotation feldspar process under acidic conditions. The yield of quartz concentrate was 25.30% with a SiO2 content of 99.20%, and the recovery rate of quartz mineral was 50%. Additionally, the yield of feldspar concentrate was 22.69% with K2O+Na2O content of 13.16%, while the yield of feldspar by-products was 7.68% with the content of K2O+Na2O of 9.23%, and the total recovery of feldspar mineral was 79%. The yield of mica concentrate was 14.50%, with K2O, Na2O, and Al2O3 content of 7.65%, 1.65%, and 16.40%, respectively. The recovery rate of mica mineral was 85%.
-
-
表 1 试样化学多元素分析结果
Table 1. Results of chemical multielement analysis of the samples
/% 成分 K2O Na2O Al2O3 SiO2 Fe2O3 CaO MgO 含量 5.65 1.38 11.50 77.02 1.78 0.83 0.25 成分 Zn SO3 MnO TiO2 WO3 Sn Pb 含量 0.15 0.12 0.07 0.13 0.02 0.10 0.10 表 2 试样粒度组成分析结果
Table 2. Analysis results of particle size composition of the samples
粒级/mm 产率/% 个别 正累积 负累积 +0.25 24.63 24.63 100.00 −0.25+0.15 24.69 49.32 75.37 −0.15+0.074 18.71 68.03 50.68 −0.074+0.038 17.43 85.46 31.97 −0.038 14.54 100.00 14.54 合计 100.00 表 3 试样预处理后各产物指标
Table 3. Each product index after sample pretreatment
/% 产品名称 产率 K2O+Na2O Fe2O3 品位 分布率 品位 分布率 磁性杂质 10.33 5.48 8.09 10.14 58.76 细泥 19.50 6.98 19.44 1.97 21.55 脱泥沉砂 70.17 7.23 72.47 0.50 19.69 试样 100.00 7.00 100.00 1.78 100.00 表 4 闭路试验结果
Table 4. The results of closed-circuit test
/% 产品名称 产率 品位 回收率 K2O Na2O Al2O3 Fe2O3 SiO2 K2O Na2O Al2O3 Fe2O3 SiO2 磁性杂质 10.33 4.27 1.15 10.13 10.14 65.67 7.84 8.65 9.18 57.99 8.82 泥 19.50 5.45 1.35 14.68 1.97 75.89 18.90 19.18 25.11 21.27 19.24 云母产品 14.50 7.65 1.65 16.40 2.05 60.54 19.72 17.43 20.86 16.46 11.41 长石精矿1 16.82 10.62 2.67 17.65 0.13 68.09 31.76 32.71 26.04 1.21 14.89 长石精矿2 5.87 10.35 2.43 17.54 0.10 67.93 10.80 10.39 9.03 0.32 5.18 长石副产品 7.68 7.38 1.85 13.43 0.35 77.89 10.08 10.35 9.05 1.49 7.78 石英精矿 25.30 0.20 0.07 0.33 0.09 99.30 0.90 1.29 0.73 1.26 32.67 试样 100.00 5.62 1.37 11.40 1.81 76.91 100.00 100.00 100.00 100.00 100.00 -
[1] 聂轶苗, 刘淑贤, 王森, 等. 石英长石无氟浮选分离的研究现状及进展[J]. 化工矿物与加工, 2015, 44(7): 51−54. doi: 10.16283/j.cnki.hgkwyjg.2015.07.015
NIE Y M, LIU S X, WANG S, et al. Current status and progress on research of separating quartz and feldspar by flotation without fluoride[J]. Industrial Minerals&Processing, 2015, 44(7): 51−54. doi: 10.16283/j.cnki.hgkwyjg.2015.07.015
[2] 高文博, 陆长龙, 肖骏, 等. 某钼尾矿浮选回收钾长石试验研究[J]. 中国钼业, 2016, 40(3): 4−8. doi: 10.13384/j.cnki.cmi.1006-2602.2016.03.003
GAO W B, LU C L, XIAO J, et al. Experimental study on the beneficiation of potassium feldspar from a molybdenum floatation tailings[J]. China Molybdnum Industry, 2016, 40(3): 4−8. doi: 10.13384/j.cnki.cmi.1006-2602.2016.03.003
[3] 刘书杰, 王中明, 陈定洲, 等. 某锡尾矿长石、石英无氟分离试验研究[J]. 矿冶, 2014, 23(6): 5−8. doi: 10.3969/j.issn.1005-7854.2014.06.002
LIU S J, WANG Z M, CHEN D Z, et al. Hydrofluoric acid-free separation of feldspar and quartz from tailings of a tin mine[J]. Mining and Metallurgy, 2014, 23(6): 5−8. doi: 10.3969/j.issn.1005-7854.2014.06.002
[4] 邱杨率, 张凌燕, 宋昱晗, 等. 长石与石英无氟无酸浮选分离研究[J]. 矿产保护与利用, 2014, 34(3): 47−51.
QIU Y S, ZHANG L Y, SONG Y H, et al. Flotation separation of feldspar from quartz without fluorine and acid[J]. Conservation and Utilization of Mineral Resources, 2014, 34(3): 47−51.
[5] 黎小玲, 译. 碱土阳离子在石英与长石浮选分离中的作用[J]. 国外选矿快报, 1994(7): 12−16.
LI X L, translation. Effect of alkaline earth cation on flotation separation of quartz and feldspar[J]. Express information of mineral processing abroad, 1994(7): 12−16.
[6] 孙宁, 高建德, 于凯, 等. 镁离子对钼尾矿中石英和长石浮选分离的影响研究[J]. 矿产保护与利用, 2020, 40(2): 30−34. doi: 10.13779/j.cnki.issn1001-0076.2020.02.004
SUN N, GAO J D, YU K, et al. The influence of magnesium ions on flotation separation of quartz and feldspar in molybdenum tailings[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 30−34. doi: 10.13779/j.cnki.issn1001-0076.2020.02.004
-