全球锰矿资源现状及选矿技术进展

王若枫, 袁帅, 刘应志, 高鹏, 李艳军. 全球锰矿资源现状及选矿技术进展[J]. 矿产保护与利用, 2023, 43(1): 14-23. doi: 10.13779/j.cnki.issn1001-0076.2023.01.001
引用本文: 王若枫, 袁帅, 刘应志, 高鹏, 李艳军. 全球锰矿资源现状及选矿技术进展[J]. 矿产保护与利用, 2023, 43(1): 14-23. doi: 10.13779/j.cnki.issn1001-0076.2023.01.001
WANG Ruofeng, YUAN Shuai, LIU Yingzhi, GAO Peng, LI Yanjun. Present Situation of Global Manganese Ore Resources and Progress of Beneficiation Technology[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 14-23. doi: 10.13779/j.cnki.issn1001-0076.2023.01.001
Citation: WANG Ruofeng, YUAN Shuai, LIU Yingzhi, GAO Peng, LI Yanjun. Present Situation of Global Manganese Ore Resources and Progress of Beneficiation Technology[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 14-23. doi: 10.13779/j.cnki.issn1001-0076.2023.01.001

全球锰矿资源现状及选矿技术进展

  • 基金项目: 国家自然科学基金(52174240)
详细信息
    作者简介: 王若枫(1996—),女,博士研究生,研究方向为含铁锰矿的高效清洁利用
    通讯作者: 袁帅(1990—),男,副教授,博士生导师,主要从事复杂矿产资源高效利用技术研究。
  • 中图分类号: TD951.2

Present Situation of Global Manganese Ore Resources and Progress of Beneficiation Technology

More Information
    Corresponding author: YUAN Shuai
  • 当前全球锰矿资源分布不均衡、产能高度集中。在概述全球与我国锰矿资源的基础上,针对我国锰矿资源分布广、品位低、技术加工性能差、高质量锰矿对外依存度高的特点,从传统选矿法、还原浸出法和焙烧联合法三个方面总结了国内外锰矿选矿技术领域的研究及应用现状,分析了目前锰矿选矿存在的工艺技术问题,并展望了未来高效、清洁、经济处理锰矿选矿技术的发展趋势。研究可为锰矿的资源化利用提供技术借鉴。

  • 加载中
  • 图 1  我国各地区锰矿床数(a)及锰矿资源储量占比(b)

    Figure 1. 

    图 2  2012—2020年中国进口锰矿量

    Figure 2. 

    图 3  生物浸出中的直接接触过程(a)和间接接触过程(b)的机理[51]

    Figure 3. 

    图 4  锰矿石还原熔炼(a)和还原焙烧(b)的简化方案

    Figure 4. 

    表 1  常见的锰矿物及其性质

    Table 1.  Common manganese minerals and their properties

    矿物名称化学式晶系颜色密度/(g·cm−3)
    软锰矿MnO2四方黑色4.3~5
    硬锰矿mMnO·MnO2·nH2O单斜黑色4.4~4.7
    水锰矿Mn2O3·nH2O单斜暗钢灰色4.2~4.4
    褐锰矿Mn2O3四方灰黑色4.7~5
    黑锰矿Mn3O4四方黑色4.84
    菱锰矿MnCO3三方粉红至白色3.6~3.7
    硫锰矿MnS等轴深绿钢灰3.9~4.1
    下载: 导出CSV

    表 2  2021年锰资源国的储量概况

    Table 2.  Reserves of manganese resource countries in 2021

    国别矿石含锰
    量/%
    储量/kt占全球
    总比/%
    储产比2021年产量/kt
    南非30~50640 00042.6786.497 400
    乌克兰18~22140 0009.33208.96670
    巴西27~48270 00018.00675.00400
    澳大利亚42~48270 00018.0081.823 300
    加蓬5061 0004.0716.943 600
    中国15~3054 0003.6041.541 300
    印度20~5034 0002.2756.67600
    加纳NA13 0000.8720.31640
    哈萨克斯坦NA5 0000.3331.25160
    马来西亚NANANANA360
    墨西哥255 0000.3325.00200
    其他NA少量NANA260
    全球总量301 500 00010075.0020 000
    注:表中的储量仅表示探明锰储量。
    下载: 导出CSV

    表 3  锰矿石中矿物的比磁化系数[40]

    Table 3.  Specific magnetization coefficient of minerals in manganese ore /(cm3·g)

    矿物磁性比磁化系数
    磁铁锰矿、黑铁锰矿、黑镁铁锰矿、方铁锰矿、黑锰矿强/较强(5884~78576)×10−6
    锰方解石、菱锰矿、褐锰矿、锰铁榴石(80~232)×10−6
    软锰矿、硬锰矿、蔷薇辉石、锰铝榴石较弱(46~72)×10−6
    磷灰石、方解石、白云石非磁性<6×10−6
    下载: 导出CSV

    表 4  不同浸出方法的优缺点

    Table 4.  Advantages and disadvantages of different leaching methods

    浸出方法优点缺点
    两矿加酸浸出[58]成本低、工艺简单、质量稳定浸出率低,渣量大
    二氧化硫浸出[59]反应迅速、杂质少SO2来源问题,产品质量低
    硫酸亚铁浸出[60]成本低、反应条件温和可控性差,产生大量的Fe(OH)3
    连二硫酸钙浸出[61]操作简单、产品纯度高渣量较大
    闪锌矿催化浸出[62]工艺流程简单、反应彻底原料复杂
    有机溶剂浸出[63]浸出率高、分离效果好成本高
    生物质还原浸出[64]原料环保成本低、质量好副产物多
    下载: 导出CSV
  • [1]

    代青青, 林顺达, 杜金佳, 等. 外场强化技术在锰矿资源处理过程中的研究进展[J]. 钢铁研究学报, 2021, 33(11): 1109−1117. doi: 10.13228/j.boyuan.issn1001-0963.20200259

    DAI Q Q, LIN S D, DU J J, et al. Research status of out-field strengthening technology in manganese resource treatment[J]. Journal of Iron and Steel Research, 2021, 33(11): 1109−1117. doi: 10.13228/j.boyuan.issn1001-0963.20200259

    [2]

    栾卓然, 闫领军, 陈超, 等. 非洲锰矿床成矿规律、开发利用与勘查建议[J]. 地质与勘探, 2021, 57(6): 1216−1228.

    LUAN Z R, YAN L J, CHEN C, et al. Metallogenic regularity, development and utilization status and suggestions on exploration of manganese resources in Africa[J]. Geology and Exploration, 2021, 57(6): 1216−1228.

    [3]

    丛源, 董庆吉, 肖克炎, 等. 中国锰矿资源特征及潜力预测[J]. 地学前缘, 2018, 25(3): 118−137. doi: 10.13745/j.esf.2018.03.010

    CONG Y, DONG Q J, XIAO K Y, et al. Characteristics and predicted potentia lof Mn resources in China[J]. Earth Science Frontiers, 2018, 25(3): 118−137. doi: 10.13745/j.esf.2018.03.010

    [4]

    ZHANG Z C, LI W, SHEN Y, et al. Issues and opportunities of manganese-based materials for enhanced Zn-ion storage performances[J]. Journal of Energy Storage, 2022, 45: 103729. doi: 10.1016/j.est.2021.103729

    [5]

    HUSSAIN R A, HUSSAIN I. Manganese selenide: Synthetic aspects and applications[J]. Journal of Alloys and Compounds, 2020, 842: 155800. doi: 10.1016/j.jallcom.2020.155800

    [6]

    QIN Y Y, SHE P F, HUANG X M, et al. Luminescent manganese(Ⅱ) complexes: Synthesis, properties and optoelectronic applications[J]. Coordination Chemistry Reviews, 2020, 416: 213331. doi: 10.1016/j.ccr.2020.213331

    [7]

    DEY S, PRAVEEN KUMAR V V. The performance of highly active manganese oxide catalysts for ambient conditions carbon monoxide oxidation[J]. Current Research in Green and Sustainable Chemistry, 2020(3): 100012.

    [8]

    朱志刚. 中国锰矿资源开发利用现状[J]. 中国锰业, 2016, 34(2): 1-3.

    ZHU Z G. Exploitation and utilization of resources of Mn ore. China Manganese Industry, 2016, 34 (2): 1-3.

    [9]

    RUDI N N, MUHAMAD M S, TE CHUAN L, et al. Evolution of adsorption process for manganese removal in water via agricultural waste adsorbents[J]. Heliyon, 2020(6): e05049.

    [10]

    孙宏伟, 王杰, 任军平, 等. 全球锰资源现状及对我国可持续发展建议[J]. 矿产保护与利用, 2020, 40(6): 169−174. doi: 10.13779/j.cnki.issn1001-0076.2020.06.023

    SUN H W, WANG J, REN J P, et al. Current situation of global manganese resources and suggestions for sustainable development in China[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 169−174. doi: 10.13779/j.cnki.issn1001-0076.2020.06.023

    [11]

    马建明. 我国黑色金属矿产资源形势回顾与展望[J]. 国土资源情报, 2019(12): 64−69.

    MA J M. Review and prospect of ferrous mineral resources in China[J]. Natural Resources Information, 2019(12): 64−69.

    [12]

    任辉, 刘敏, 王自国, 等. 我国锰矿资源及产业链安全保障问题研究[J]. 中国工程科学, 2022, 24(3): 20−28.

    REN H, LIU M, WANG Z G, et al. Security of manganese resources and industrial chain in China[J]. Strategic Study of CAE, 2022, 24(3): 20−28.

    [13]

    刘陟娜, 张新元, 许虹, 等. 境外锰矿资源分布现状与中资企业勘查开发建议[J]. 中国矿业, 2015, 24(8): 8−15. doi: 10.3969/j.issn.1004-4051.2015.08.002

    LIU Z N, ZHANG X Y, XU H. Overseas manganese resources distribution and proposals for Chinese mining companies[J]. China Mining Magazine, 2015, 24(8): 8−15. doi: 10.3969/j.issn.1004-4051.2015.08.002

    [14]

    胡振华. 智能时代传统锰产业转型发展探析−以湘西土家族苗族自治州锰产业转型为例[J]. 人民论坛·学术前沿, 2019(18): 61−71.

    HU Z H. Analysis of the transformation of the traditional manganese industry in the intelligent age—A case study of the manganese industry of Xiangxi Tujia and Miao Autonomous Prefecture of Hunan[J]. Frontiers, 2019(18): 61−71.

    [15]

    LIU B B, ZHANG Y B, LU M M, et al. Extraction and separation of manganese and iron from ferruginous manganese ores: A review[J]. Minerals Engineering, 2019, 131: 286−303. doi: 10.1016/j.mineng.2018.11.016

    [16]

    臧忠江, 隋延辉. 俄罗斯锰矿资源现状与利用情况[J]. 中国锰业, 2019, 37(4): 1−7.

    ZANG Z J, SUI Y H. An analysis of the present situation and utilization of manganese ore resources in Russian federation[J]. China Manganese Industry, 2019, 37(4): 1−7.

    [17]

    覃德亮, 陈南雄. 2020年全球锰矿及我国锰产品生产简述[J]. 中国锰业, 2021, 39(4): 10−12+21.

    QIN D L, CHEN N X. 2020 Global manganese ore and the production brief in China’s manganese products[J]. China Manganese Industry, 2021, 39(4): 10−12+21.

    [18]

    彭俊, 周小舟, 沈裕军, 等. 深海锰结核以煤代焦还原熔炼新工艺研究[J]. 海洋科学, 2021, 45(7): 41−45. doi: 10.11759/hykx20201209001

    PENG J, ZHOU X Z, SHEN Y J, et al. New technology of deep-sea manganese nodule smelting with coal instead of coke[J]. Marine Sciences, 2021, 45(7): 41−45. doi: 10.11759/hykx20201209001

    [19]

    JONES D O B, ARDRON J A, COLAÇO A, et al. Environmental considerations for impact and preservation reference zones for deep-sea polymetallic nodule mining[J]. Marine Policy, 2020, 118: 103312.

    [20]

    WANG M W, WU Z Y, BEST J, et al. Using multibeam backscatter strength to analyze the distribution of manganese nodules: A case study of seamounts in the Western Pacific Ocean. Applied Acoustics, 2021, 173: 107729.

    [21]

    SENANAYAKE G. Acid leaching of metals from deep-sea manganese nodules – A critical review of fundamentals and applications. Minerals Engineering, 2011, 24(13): 1379-1396.

    [22]

    何辉. 锰矿资源现状与锰矿勘察研究[J]. 中国锰业, 2017, 35(1): 23−4. doi: 10.14101/j.cnki.issn.1002-4336.2017.01.007

    HE H. A present situation of mn-ore resources and its investigation[J]. China Manganese Industry, 2017, 35(1): 23−4. doi: 10.14101/j.cnki.issn.1002-4336.2017.01.007

    [23]

    邓文兵, 张彦文, 孔令湖, 等. 中国锰矿资源现状与国家级锰矿床实物地质资料筛选[J]. 中国矿业, 2019, 28(9): 175−182. doi: 10.12075/j.issn.1004-4051.2019.09.001

    DENG W B, ZHANG Y W, KONG L H, et al. Current status of manganese ore resources in China and selecting for national physical geological data of manganese ore deposits[J]. China Mining Magazine, 2019, 28(9): 175−182. doi: 10.12075/j.issn.1004-4051.2019.09.001

    [24]

    YU W C, POLGÁRI MÁRTA, GYOLLAI ILDIKÓ, et al. Microbial metallogenesis of early carboniferous manganese deposit in central Guangxi, South China[J]. Ore Geology Reviews, 2021, 136: 104251. doi: 10.1016/j.oregeorev.2021.104251

    [25]

    SHENG X, ZHANG Z H, WANG Z H, et al. Effects of heavy metals on moss diversity and analysis of moss indicator species in Nancha manganese mining area, Southwestern China[J]. Global Ecology and Conservation, 2021, 28: e01665. doi: 10.1016/j.gecco.2021.e01665

    [26]

    WANG F Y, MAO X C, DENG H, et al. Manganese potential mapping in western Guangxi-southeastern Yunnan (China) via spatial analysis and modal-adaptive prospectivity modeling[J]. Transactions of Nonferrous Metals Society of China, 2020, 30: 1058−1070. doi: 10.1016/S1003-6326(20)65277-3

    [27]

    李飞. 新疆锰产业发展现状与对策建议[J]. 中国锰业, 2021, 39(3): 1−3. doi: 10.14101/j.cnki.issn.1002-4336.2021.03.001

    LI F. The development status and countermeasures of manganese industry in Xinjiang[J]. China Manganese Industry, 2021, 39(3): 1−3. doi: 10.14101/j.cnki.issn.1002-4336.2021.03.001

    [28]

    黄屹, 陈广义, 田郁溟, 等. 中国锰业存在的主要问题及对策建议[J]. 地质与勘探, 2021, 57(2): 294−304.

    HUANG Y, CHEN G Y, TIAN Y M, et al. Main problems and countermeasures suggested for the manganese industry of China[J]. Geology and Exploration, 2021, 57(2): 294−304.

    [29]

    XU H, GAO J B, YANG R D, et al. Metallogenic mechanism of large manganese deposits from Permian manganese ore belt in western south China block: New mineralogical and geochemical evidence[J]. Ore Geology Reviews, 2021, 132: 103993. doi: 10.1016/j.oregeorev.2021.103993

    [30]

    詹海青, 张丽云. 安全环保新政下的中国锰矿生产现状[J]. 中国锰业, 2019, 37(2): 3−8. doi: 10.14101/j.cnki.issn.1002-4336.2019.02.002

    ZHAN H Q, ZHANG L Y. Present situation of manganese mine production under a new policy of safety and environmental protection[J]. China Manganese Industry, 2019, 37(2): 3−8. doi: 10.14101/j.cnki.issn.1002-4336.2019.02.002

    [31]

    YANG T Y, XUE Y, LIU X M, et al. Solidification/stabilization and separation/extraction treatments of environmental hazardous components in electrolytic manganese residue: A review[J]. Process Safety and Environmental Protection, 2022, 157: 509−526. doi: 10.1016/j.psep.2021.10.031

    [32]

    李维健. 我国锰行业湿法产品发展趋势[J]. 中国锰业, 2021, 39(6): 1−4. doi: 10.14101/j.cnki.issn.1002-4336.2021.06.001

    LI W J. Trends in wet products in China’s manganese industry[J]. China Manganese Industry, 2021, 39(6): 1−4. doi: 10.14101/j.cnki.issn.1002-4336.2021.06.001

    [33]

    高艺, 刘宏杰. 锰矿资源现状及潜力预测[J]. 中国锰业, 2020, 38(2): 1−5. doi: 10.14101/j.cnki.issn.1002-4336.2020.02.001

    GAO Y, LIU H J. A current situation of manganese resources and its technical research progress[J]. China Manganese Industry, 2020, 38(2): 1−5. doi: 10.14101/j.cnki.issn.1002-4336.2020.02.001

    [34]

    SINGH V, CHAKRABORTY T and TRIPATHY S K. A review of low grade manganese ore upgradation processes[J]. Mineral Processing and Extractive Metallurgy Review, 2020, 41: 417−438. doi: 10.1080/08827508.2019.1634567

    [35]

    FAND, YANG P. Introduction to and classification of manganese deposits of China[J]. Ore Geology Reviews, 1999, 15(1): 1−13.

    [36]

    BAIOUMYH M, KHEDR M Z, AHMED A H. Mineralogy, geochemistry and origin of Mn in the high-Mn iron ores, Bahariya Oasis, Egypt[J]. Ore Geology Reviews, 2013, 53: 63−76. doi: 10.1016/j.oregeorev.2012.12.009

    [37]

    张鑫, 崔丽娜, 李文涛, 等. 南美某海相沉积型锰矿重选试验研究[J]. 中国锰业, 2021, 39(1): 36−41.

    ZHANG X, CUI L N, LI W T, et al. An experimental study on gravity separation of a marine sedimentary manganese ore from south America[J]. China Manganese Industry, 2021, 39(1): 36−41.

    [38]

    魏克帅, 蔡建新. 科特迪瓦某锰矿的选矿工业试验[J]. 中国金属通报, 2021(6): 64−65. doi: 10.3969/j.issn.1672-1667.2021.06.031

    WEI K S, CAI J X. Industrial tests on the beneficiation of a manganese ore in Côte d'Ivoire[J]. China Metal Bulletin, 2021(6): 64−65. doi: 10.3969/j.issn.1672-1667.2021.06.031

    [39]

    DING P, LIU Q J, and PANG W H. A review of manganese ore beneficiation situation and development[J]. Applied Mechanics and Materials, 2013, 380-384: 4431−4433. doi: 10.4028/www.scientific.net/AMM.380-384.4431

    [40]

    苏恩清. 高磷锰矿石机械选矿法富锰降磷的研究[J]. 中国锰业. 1990(6): 8-12.

    SU E Q. Study on manganese enrichment and phosphorus reduction by mechanical beneficiation of high phosphorus manganese ore[J]. China Manganese Industry, 1990(6): 8-12.

    [41]

    汤振宏, 阙绍娟. 广西某高硫低品位碳酸锰矿选矿试验研究[J]. 有色金属(选矿部分), 2017(5): 51−54.

    TANG Z H, QUE S J. Experimental study on mineral processing of a high-sulfur and low-grade manganese carbonate ore in Guangxi[J]. Nonferrous Metals (Mineral Processing Section), 2017(5): 51−54.

    [42]

    喻明军. 锰矿选矿试验研究[J]. 中国锰业, 2020, 38(5): 31−34. doi: 10.14101/j.cnki.issn.1002-4336.2020.05.007

    YU M J. An experimental study on sintering of manganese ore concentrate[J]. China Manganese Industry, 2020, 38(5): 31−34. doi: 10.14101/j.cnki.issn.1002-4336.2020.05.007

    [43]

    谭鑫, 浅析氧化锰矿石选矿工艺研究现状[J]. 科技与创新, 2019, (1): 80-81.

    TAN X. Analysis of manganese oxide ore beneficiation process research status[J]. Science and Technology & Innovation, 2019(1): 80-81.

    [44]

    李少平, 郭腾博, 黄超军, 等. 碳酸锰矿浮选药剂研究进展[J]. 矿产保护与利用, 2018(1): 140−145. doi: 10.13779/j.cnki.issn1001-0076.2018.01.025

    LI S P, GUO T B, HUANG C J, et al. Research progress of flotation reagents for manganese carbonate ore[J]. Multipurpose Utilization of Mineral Resources, 2018(1): 140−145. doi: 10.13779/j.cnki.issn1001-0076.2018.01.025

    [45]

    代典, 梁欢, 何东升, 等. 湘西地区微细粒级难选菱锰矿浮选试验研究[J]. 矿产综合利用, 2020(4): 76−81. doi: 10.3969/j.issn.1000-6532.2020.04.012

    DAI D, LIANG H, HE D S, et al. Experimental study on the flotation of a micro-grained refractory rhodochrosite in western Hunan area[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 76−81. doi: 10.3969/j.issn.1000-6532.2020.04.012

    [46]

    张永, 钟宏, 谭鑫, 等. 阳离子捕收剂研究进展[J]. 矿产保护与利用, 2011(3): 44−49. doi: 10.3969/j.issn.1001-0076.2011.03.011

    ZHANG Y, ZHONG H, TAN X, et al. Research progress in cationic collectors[J]. Multipurpose Utilization of Mineral Resources, 2011(3): 44−49. doi: 10.3969/j.issn.1001-0076.2011.03.011

    [47]

    杨晓文, 贾宗勇, 刘玉川, 等. 某低品位锰尾矿渣的综合利用研究[J]. 中国锰业, 2021, 39(4): 26−29+33. doi: 10.14101/j.cnki.issn.1002-4336.2021.04.007

    YANG X W, JIA Z Y, LIU Y C, et al. Comprehensive utilization of a low grade manganese tailing slag[J]. China Manganese Industry, 2021, 39(4): 26−29+33. doi: 10.14101/j.cnki.issn.1002-4336.2021.04.007

    [48]

    KANUNGO S B, MISHRA S K, BISWAL D. Beneficiation of low-grade, high-phosphorus manganese ores of Andhra Pradesh, India, by wet high-intensity magnetic separation plus jigging or hydrocyclone classification[J]. Mining, Metallurgy & Exploration, 2000, 17(4): 269−275.

    [49]

    张一敏. 高磷锰矿磁选—反浮选试验研究[J]. 中国锰业, 1994(1): 27−31. doi: 10.14101/j.cnki.issn.1002-4336.1994.01.007

    ZHANG Y M. The experiment on magnetic separation followed by antiflotation of high phosphorus manganese ore[J]. China Manganese Industry, 1994(1): 27−31. doi: 10.14101/j.cnki.issn.1002-4336.1994.01.007

    [50]

    GHOSH S, DAS A P. Bioleaching of manganese from mining waste residues using Acinetobacter sp.[J]. Geology, Ecology, and Landscapes, 2017(1): 77−83.

    [51]

    GHOSH S, MOHANTY S, AKCIL A, et al. A greener approach for resource recycling: Manganese bioleaching[J]. Chemosphere, 2016, 154: 628−639. doi: 10.1016/j.chemosphere.2016.04.028

    [52]

    SHARMA N, EISELE TIMOTHY C. Anaerobic reductive bioleaching of manganese ores[J]. Minerals Engineering, 2021, 173: 107152. doi: 10.1016/j.mineng.2021.107152

    [53]

    MEHTA K D, DAS C and PANDEY B D. Leaching of copper, nickel and cobalt from Indian Ocean manganese nodules by Aspergillus niger[J]. Hydrometallurgy, 2010, 105: 89−95. doi: 10.1016/j.hydromet.2010.08.002

    [54]

    ACHARYA C, KAR R N and SUKLA L B. Studies on reaction mechanism of bioleaching of manganese ore[J]. Minerals Engineering, 2003, 16: 1027−1030. doi: 10.1016/S0892-6875(03)00239-5

    [55]

    SINHA M K, PURCELL W. Reducing agents in the leaching of manganese ores: A comprehensive review[J]. Hydrometallurgy, 2019, 187: 168−186. doi: 10.1016/j.hydromet.2019.05.021

    [56]

    REGEANE M F, THOMAz A G P, CLAUDIA Q L. Oxidative precipitation of manganese from acid mine drainage by potassium permanganate[J]. Journal of Chemistry, 2013, 2013: 287257.

    [57]

    杨俊卿, 黎明, 喻朝海. 几种锰矿的冶炼及提纯技术分析[J]. 现代矿业, 2019, 35(12): 141−143+72. doi: 10.3969/j.issn.1674-6082.2019.12.040

    YANG J Q, LI M, YU C H. Analysis of smelting and purification technology of several manganese ore[J]. Modern Mining, 2019, 35(12): 141−143+72. doi: 10.3969/j.issn.1674-6082.2019.12.040

    [58]

    LEI M E, MA B Z, LV D Y, et al. A process for beneficiation of low-grade manganese ore and synchronous preparation of calcium sulfate whiskers during hydrochloric acid regeneration[J]. Hydrometallurgy, 2021, 199: 105533. doi: 10.1016/j.hydromet.2020.105533

    [59]

    LIU Y C, LIN Q Q, LI L F, et al. Study on hydrometallurgical process and kinetics of manganese extraction from low-grade manganese carbonate ores[J]. International Journal of Mining Science and Technology, 2014, 24: 567−571. doi: 10.1016/j.ijmst.2014.05.022

    [60]

    LIN S D, LI K Q, YANG Y, et al. Microwave-assisted method investigation for the selective and enhanced leaching of manganese from low-grade pyrolusite using pyrite as the reducing agent[J]. Chemical Engineering and Processing - Process Intensification, 2021, 159: 108209. doi: 10.1016/j.cep.2020.108209

    [61]

    王帅, 戴婷, 钟宏. 锰资源利用技术研究进展[J]. 中国锰业, 2018, 36(2): 1−5.

    WANG S, DAI T, ZHONG H. A research progress on manganese resource in utilization technologies[J]. China Manganese Industry, 2018, 36(2): 1−5.

    [62]

    ZHANG W S, CHENG C Y. Manganese metallurgy review. Part I: Leaching of ores/secondary materials and recovery of electrolytic/chemical manganese dioxide[J]. Hydrometallurgy, 2007, 89(3): 137−159.

    [63]

    ZHANG Y B, DU M H, LIU B B, et al. Separation and recovery of iron and manganese from high-iron manganese oxide ores by reduction roasting and magnetic separation technique[J]. Separation Science and Technology, 2017, 52: 1321−1332. doi: 10.1080/01496395.2017.1284864

    [64]

    戴惠新, 赵志强. 云南某难选锰铁共生矿石选矿试验研究[J]. 金属矿山, 2008(2): 53−56+65. doi: 10.3321/j.issn:1001-1250.2008.02.013

    DAI H X, ZHAO Z Q. Beneficiation test on a Yunan refractory manganese-iron ore[J]. Metal Mine, 2008(2): 53−56+65. doi: 10.3321/j.issn:1001-1250.2008.02.013

    [65]

    詹海青, 卢琳, 程秦豫, 等. 广西某低品位铁锰矿选矿工艺研究[J]. 中国锰业, 2013, 30(4): 27−29+46. doi: 10.3969/j.issn.1002-4336.2013.04.009

    DAN H Q, LU L, CHENG Q Y, et al. Mineral processing research on low grade ferro-manganese ore in Guangxi China[J]. Manganese Industry, 2013, 30(4): 27−29+46. doi: 10.3969/j.issn.1002-4336.2013.04.009

    [66]

    YOU Z X, LI G H, ZHANG Y B, et al. Extraction of manganese from iron rich MnO2 ores via selective sulfation roasting with SO2 followed by water leaching[J]. Hydrometallurgy, 2015, 156: 225−231. doi: 10.1016/j.hydromet.2015.05.017

    [67]

    ZHANG Y B, YOU Z X, LI G H, et al. Manganese extraction by sulfur-based reduction roasting–acid leaching from low-grade manganese oxide ores[J]. Hydrometallurgy, 2013, 133: 126−132. doi: 10.1016/j.hydromet.2013.01.003

    [68]

    YUAN S, WANG R F, GAO P, et al. Suspension magnetization roasting on waste ferromanganese ore: A semi-industrial test for efficient recycling of value minerals[J]. Powder Technology, 2022, 396: 80−91. doi: 10.1016/j.powtec.2021.10.048

    [69]

    YUAN S, ZHOU W T, HAN Y X, et al. Separation of manganese and iron for low-grade ferromanganese ore via fluidization magnetization roasting and magnetic separation technology[J]. Minerals Engineering, 2020, 152: 106359. doi: 10.1016/j.mineng.2020.106359

    [70]

    YUAN S, ZHOU W T, HAN Y X, et al. An innovative technology for full component recovery of iron and manganese from low grade iron-bearing manganese ore[J]. Powder Technology, 2020, 373: 73−81. doi: 10.1016/j.powtec.2020.06.032

  • 加载中

(4)

(4)

计量
  • 文章访问数:  358
  • PDF下载数:  763
  • 施引文献:  0
出版历程
收稿日期:  2022-09-05
刊出日期:  2023-02-15

目录