云南某金矿半自磨钢球尺寸优化及离散元仿真模拟分析

谢浩松, 肖庆飞, 张志鹏, 任英东. 云南某金矿半自磨钢球尺寸优化及离散元仿真模拟分析[J]. 矿产保护与利用, 2023, 43(1): 57-65. doi: 10.13779/j.cnki.issn1001-0076.2023.01.006
引用本文: 谢浩松, 肖庆飞, 张志鹏, 任英东. 云南某金矿半自磨钢球尺寸优化及离散元仿真模拟分析[J]. 矿产保护与利用, 2023, 43(1): 57-65. doi: 10.13779/j.cnki.issn1001-0076.2023.01.006
XIE Haosong, XIAO Qingfei, ZHANG Zhipeng, REN Yingdong. Optimization of Steel Ball Size and Discrete Element Simulation Analysis of a Semi-autogenous Grinding Gold Mine in Yunnan[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 57-65. doi: 10.13779/j.cnki.issn1001-0076.2023.01.006
Citation: XIE Haosong, XIAO Qingfei, ZHANG Zhipeng, REN Yingdong. Optimization of Steel Ball Size and Discrete Element Simulation Analysis of a Semi-autogenous Grinding Gold Mine in Yunnan[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 57-65. doi: 10.13779/j.cnki.issn1001-0076.2023.01.006

云南某金矿半自磨钢球尺寸优化及离散元仿真模拟分析

  • 基金项目: 国家自然科学基金地区科学基金项目(51964044);云南省地方高校(部分)联合专项(2018FH001-051);云南省教育厅基金(2019J0738)
详细信息
    作者简介: 谢浩松(1995—),男,四川巴中人,硕士研究生,主要从事碎磨理论与工艺的研究,E-mail:805978814@qq.com
    通讯作者: 肖庆飞(1980—),男,云南昆明人,博士,教授,主要从事碎磨理论与工艺的研究,E-mail:13515877@qq.com
  • 中图分类号: TD921+.4

Optimization of Steel Ball Size and Discrete Element Simulation Analysis of a Semi-autogenous Grinding Gold Mine in Yunnan

More Information
  • 针对云南某金矿半自磨顽石(−80+25 mm)累积严重的问题,在分析矿石力学特性和给矿粒度组成的基础上,根据段氏球径半理论公式计算确定理论最佳钢球尺寸,以钢球尺寸为单一变量,进行实验室磨矿循环试验对比不同方案磨矿指标,并通过离散元仿真模拟分析进行验证。研究结果表明:该矿石平均普氏硬度较大,中等偏硬,同时存在脆性及韧性较大的矿石;在磨矿循环过程中推荐Φ140 mm方案的顽石积累积趋势最小,4次循环后,顽石产率最低,为3.89%,较现场Φ120 mm方案降低3.50百分点,−2 mm合格粒级及−0.074 mm粒级产率最高,分别较现场Φ120 mm方案提高8.40和3.15百分点。推荐Φ140 mm方案较现场Φ120 mm方案顽石颗粒运动状态更活跃,碰撞能量分布更合理,介质对顽石单次碰撞比能耗及高能碰撞频次更高。从磨矿试验和离散元模拟仿真试验验证了推荐Φ140 mm方案半自磨降低顽石累积的有效性。

  • 加载中
  • 图 1  磨矿分级流程

    Figure 1. 

    图 2  4次磨矿循环试验顽石(−80+25 mm)产率

    Figure 2. 

    图 3  4次磨矿循环试验合格粒级(−2 mm)产率

    Figure 3. 

    图 4  4次磨矿循环试验−0.074 mm粒级产率

    Figure 4. 

    图 5  4次磨矿循环后磨矿产品综合比较

    Figure 5. 

    图 6  半自磨机筒体模型

    Figure 6. 

    图 7  筒体衬板几何尺寸

    Figure 7. 

    图 8  矿石颗粒模型

    Figure 8. 

    图 9  Φ120 mm方案颗粒运动状态

    Figure 9. 

    图 10  Φ140 mm方案颗粒运动状态

    Figure 10. 

    图 11  Φ120 mm方案抛落区顽石个数

    Figure 11. 

    图 12  Φ140 mm方案抛落区顽石个数

    Figure 12. 

    图 13  半自磨机中不同类型碰撞能量分布

    Figure 13. 

    图 14  Φ120 mm方案介质与顽石碰撞累积能量分布

    Figure 14. 

    图 15  Φ140 mm方案介质与顽石碰撞累积能量分布

    Figure 15. 

    表 1  矿石的力学性质测定结果

    Table 1.  The determination of mechnical properties of ores

    矿块编号12345平均值
    密度/(g·cm−3)3.694.453.433.564.173.86
    单轴抗压强度σ/MPa148.0094.7081.9383.1773.8096.32
    静弹性模量E/104 MPa9.0312.607.4510.802.338.44
    泊松比μ0.210.240.240.380.260.27
    下载: 导出CSV

    表 2  半自磨给矿粒度组成

    Table 2.  Particle size of ore feed in semi-autogenous grinding mill

    级别/mm产率/%筛上累积产率/%筛下累积产率/%
    +2000.870.87100
    200~15017.3318.299.13
    150~12011.3929.5981.8
    150~1006.3235.9170.41
    100~804.240.1164.09
    80~456.246.3159.89
    45~352.648.9153.69
    35~255.8154.7251.09
    -2545.2810045.28
    总计100
    下载: 导出CSV

    表 3  磨矿对比试验方案

    Table 3.  Scheme of grinding comparison test

    钢球方案平均
    尺寸/mm
    钢球
    个数
    钢球
    质量/kg
    矿石
    质量/kg
    Φ140 mm140333.6243.96
    Φ130 mm130435.8946.93
    m(Φ140 mm)∶m(Φ120 mm)=1∶31251:332.3842.34
    Φ120 mm120535.2946.15
    下载: 导出CSV

    表 4  离散元颗粒模型个数

    Table 4.  Number of particle model in discrete element simulation

    颗粒质量比例/%个数
    200 mm矿石18.2013
    150 mm矿石11.3954
    120 mm矿石6.3296
    100 mm矿石4.20122
    80 mm矿石6.20257
    45 mm矿石2.60876
    35 mm矿石5.8110889
    25 mm矿石45.28113043
    现场方案(Φ120 mm)100.00477
    推荐方案 (Φ140 mm)100.00295
    下载: 导出CSV

    表 5  离散元仿真接触参数

    Table 5.  Contact parameters in discrete element simulation

    颗粒模型恢复系数静摩擦系数滚动摩擦系数
    钢球-钢球0.700.250.03
    钢球-矿石0.400.500.05
    矿石-矿石0.350.680.30
    下载: 导出CSV

    表 6  半自磨机中不同类型碰撞能量分布

    Table 6.  Energy distribution of different collision types in semi-autogenous mill

    钢球方案总能量/J对钢球/J对矿石/J对衬板/J
    Φ120 mm625830.46125364.80598198.00197037.21
    Φ140 mm606109.9092641.99585131.95188377.13
    下载: 导出CSV

    表 7  两种钢球方案下顽石碰撞比能耗对比

    Table 7.  Comparison of specific energy consumption of stubborn stone collision in two steel ball schemes

    统计数据单次最大比能耗/(J·kg−1)≥10 J/kg比能耗频次
    顽石粒级80 mm45 mm30 mm80 mm45 mm30 mm
    Φ120 mm55.0777.94225.73613011791
    Φ140 mm71.2688.50254.74651862465
    下载: 导出CSV
  • [1]

    段希祥, 肖庆飞. 碎矿与磨矿[M]. 北京: 冶金工业出版社, 2012.

    DUAN X X, XIAO Q F. Ore crushing and grinding [M]. Beijing: Metallurgical Industry Press, 2012.8

    [2]

    黄治国, 方启学, 任翔, 等. 全自磨半自磨磨矿技术[M]. 北京: 冶金工业出版社, 2018

    HUANG Z G, FANG Q X, REN X et al. Full autogenous grinding and semi-autogenous grinding technology [M]. Beijing: Metallurgical Industry Press, 2018.

    [3]

    宗路, 李旭, 蔡改贫, 等. 基于响应曲面法的半自磨机磨矿能耗研究[J]. 化工矿物与加工, 2018, 47(4): 18−21+53. doi: 10.16283/j.cnki.hgkwyjg.2018.04.006

    ZONG L, LI X, CAI G P, et al. Study on energy consumption of semi-autogenous mill grinding based on response surface method[J]. Chemical Minerals and Processing, 2018, 47(4): 18−21+53. doi: 10.16283/j.cnki.hgkwyjg.2018.04.006

    [4]

    尹自信. 球磨机铁矿石颗粒破碎及粒度分布行为研究[D]. 徐州: 中国矿业大学, 2020.

    YIN Z X. Study of iron ore particle crushing and particle size distribution behavior in ball mill[D]. Xuzhou: China University of Mining and Technology, 2020.

    [5]

    赵元, 马华庆, 赵永志. 研磨介质形状对球磨机特性影响的DEM模拟研究[J]. 矿山机械, 2020, 48(5): 38−45.

    ZHAO Y, MA H Q, ZHAO Y Z. DEM simulation study on the effect of grinding media shape on ball mill characteristics[J]. Mining Machinery, 2020, 48(5): 38−45.

    [6]

    YU X P, XU N, ZHEN C Z, et al. Friction and wear of liner and grinding ball in iron ore ball mill[J]. Tribology International, 2017, 115: 506-517.

    [7]

    CLEARY P W, DELANEY G W, SINNOTT M D, et al. Inclusion of incremental damage breakage of particles and slurry rheology into a particle scale multiphase model of a SAG mill[J]. Minerals Engineering, 2018, 128: 92−105. doi: 10.1016/j.mineng.2018.08.026

    [8]

    CLEARY P W, MORRISON R D, DELANEY G W. Incremental damage and particle size reduction in a pilot SAG mill: DEM breakage method extension and validation[J]. Minerals Engineering, 2018, 128: 56−68. doi: 10.1016/j.mineng.2018.08.021

    [9]

    CLEARY P W, MORRISON R D. Understanding fine ore breakage in a laboratory scale ball mill using DEM[J]. Minerals Engineering, 2011, 24: 352−366. doi: 10.1016/j.mineng.2010.12.013

    [10]

    乔文存, 姬建钢, 董节功, 等. 半自磨流程的优化措施研究[J]. 矿山机械, 2014, 42(7): 91−96. doi: 10.16816/j.cnki.ksjx.2014.07.024

    QIAO W C, JI J G, DONG J G, et al. Research on optimization measures of semi-autogenous grinding process[J]. Mining & Processing Machinery, 2014, 42(7): 91−96. doi: 10.16816/j.cnki.ksjx.2014.07.024

    [11]

    WANG M H, YANG R Y, YU A B. DEM investigation of energy distribution and particle breakage in tumbling ball mills[J]. Powder Technology, 2012, 223: 83−91. doi: 10.1016/j.powtec.2011.07.024

    [12]

    WEERASEKARA N S, POWELL M S, CLEARY P W, et al. The contribution of DEM to the science of comminution[J]. Powder Technology, 2013, 248: 3−24. doi: 10.1016/j.powtec.2013.05.032

    [13]

    付开进. 大型半自磨机磨矿性能仿真及参数优化[D]. 长春: 吉林大学, 2016.

    FU K J. Grinding performance simulation and parameter optimization of large semi-self-grinding mill [D]. Changchun: Jilin University, 2016.

    [14]

    WEERASEKARA N S, LIU L X, POWELL M S. Estimating energy in grinding using DEM modelling[J]. Minerals Engineering, 2016, 85: 23−33. doi: 10.1016/j.mineng.2015.10.013

    [15]

    曲迪, 刘万华, 杨玉巍, 等. 基于离散元的半自磨机运行参数研究[J]. 矿业研究与开发, 2016, 36(2): 96−99. doi: 10.13827/j.cnki.kyyk.2016.02.022

    QU D, LIU W H, YANG Y W, et al. Research on operation parameters of semi-autogenous mill based on discrete element[J]. Mining Research and Development, 2016, 36(2): 96−99. doi: 10.13827/j.cnki.kyyk.2016.02.022

    [16]

    RODRIGUEZ V A, CARVALHO R M D, TAVARES L M. Insights into advanced ball mill modelling through discrete element simulations, Minerals Engineering, 2018, 127: 48-60.

    [17]

    张谦, 肖庆飞, 王旭东, 等. 改善新疆某铜镍矿半自磨机顽石积累[J]. 过程工程学报, 2020, 20(9): 1089−1096. doi: 10.12034/j.issn.1009-606X.219347

    ZHANG Q, XIAO Q F, WANG X D, et al. Improvement of refractory rock accumulation in a semi-autocycle mill in Xinjiang[J]. Chinese Journal of Process Engineering, 2020, 20(9): 1089−1096. doi: 10.12034/j.issn.1009-606X.219347

    [18]

    武煜凯, 肖庆飞, 高志勇. 多级配球降低半自磨中顽石积累及改善磨矿效果试验[J]. 稀有金属, 2022, 46(5): 673−680. doi: 10.13373/j.cnki.cjrm.XY20120018

    WU Y K, XIAO Q F, GAO Z Y. Experimental study on reducing the accumulation of refractory stones in semi-autogenous grinding and improving the grinding effect[J]. Rare Metals, 2022, 46(5): 673−680. doi: 10.13373/j.cnki.cjrm.XY20120018

    [19]

    王肖江. 基于离散元法的武山铜矿半自磨介质优化研究[D]. 昆明: 昆明理工大学, 2017.

    WANG X J. Research on medium optimization of semi-autogenous grinding in Wushan opper mine based on discrete element method [D]. Kunming: Kunming University of Science and Technology, 2017.

    [20]

    王俊. 基于离散单元法的半自磨机工作性能研究[D]. 赣州: 江西理工大学, 2015.

    WANG J. Research on performance of semi-autogenous mill based on discrete element method [D]. Ganzhou: Jiangxi University of Science and Technology, 2015.

    [21]

    何智文. 黄金选矿厂湿式半自磨机磨矿效率提升方法分析与实施[D]. 济南: 山东大学, 2018.

    HE Z W. Analysis and implementation of grinding efficiency improvement method of wet semi-autogenous mill in gold concentrator [D]. Jinan: Shandong University, 2018.

  • 加载中

(15)

(7)

计量
  • 文章访问数:  175
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2022-10-27
刊出日期:  2023-02-15

目录