-
摘要:
氧化铋在锌冶炼中用于废水脱氯已有研究和应用,但除氯机理和边界条件仍有不明之处。在热力学计算的基础上,研究了氧化铋在酸化—吸附除氯—碱性脱氯—再生循环全流程使用中的物相和形貌转变。热力学计算结果表明,Bi3+-ClH2O系在pH为0~10范围内,Cl可通过形成BiOCl沉淀除去,随着pH值的升高,Bi的物相依次从Bi3+向BiOCl、Bi2O3转变。在n(Bi)∶n(Cl)=1∶1时,溶液中最低Cl质量浓度为3.91 mg/L,而SO42-的存在对氯的分布没有影响。试验研究显示,氧化铋(Bi2O3)在硫酸质量浓度高于和低于60 g/L酸化时分别生成硫酸铋和碱式硫酸铋,形貌也从簇状向规则棒状转变,两者均可与Cl在酸性溶液中吸附形成BiOCl沉淀,BiOCl沉淀经NaOH碱洗后再生为Bi2O3,可返回利用。氧化铋经10个循环后,Cl去除率仍高于90%,除氯稳定性好。
Abstract:Bismuth oxide was used for dechlorination from wastewater in zinc smelting, but the detailed dechlorination mechanism and boundary conditions are still unclear. Based on thermodynamic calculation, the phase and morphology transitions of bismuth oxide in the whole process included acidification-adsorption dechlorination - alkaline dechlorination - regeneration cycle were investigated. The thermodynamic calculations show that, in Bi3+-Cl-H2O system, Cl can be removed by forming the precipitation of BiOCl in the pH range of 0~10. With the increase of pH, the main phase of Bi was transformed from Bi3+ to BiOCl and Bi2O3 in turn. When n(Bi)∶n(Cl)=1∶1, the lowest Cl concentration in the solution was 3.91 mg/L, and the presence of SO42- had no effect on the chlorine distribution. Experimental studies show that bismuth oxide was changed to bismuth sulfate and basic bismuth sulfate respectively below and above 60 g/L sulfuric acid when acidified with sulfuric acid, and the morphology changed from cluster to regular rod. Both of them can adsorbed with Cl in acid solution to form BiOCl precipitation. The BiOCl can be regenerated into Bi2O3 after NaOH alkali washing and returned to utilization. After 10 cycles of bismuth oxide, the Cl removal rate was still higher than 90%, and the chlorination removal stability was good.
-
Key words:
- dechloridation /
- zinc hydrometallurgy /
- wastewater /
- bismuth oxide /
- acidification
-
-
表 1 脱氯渣的元素成分
Table 1. Element composition of the dechlorinated residue
/% 元素 Bi O Si Fe Cl Ca Zn Pb Al 含量 89.04 10.39 0.17 0.08 0.07 0.04 0.02 0.01 0.01 -
[1] 于恒, 黄细聪, 李科, 等. 钢铁企业除尘灰综合利用现状与展望[J]. 矿产保护与利用, 2021, 41(4): 164−171.
YU H, HUANG X C, LI K, et al. Present situation and prospect of comprehensive utilization of precipitator dust in iron and steel enterprises[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 164−171.
[2] 梅光贵. 湿法炼锌学[M]. 长沙: 中南工业大学出版社, 2001.
MEI G G. Hydrometallurgy of zinc[M]. Changsha: Central South University of Technology Press, 2001.
[3] 任杰, 杜敏, 刘乐. 湿法炼锌废水综合回收利用研究[J]. 有色金属(冶炼部分), 2017(11): 75−78.
REN J, DU M, LIU L. Study on comprehensive recovery and utilization of wastewater in zinc hydrometallurgy[J]. Nonferrous Metals (Extractive Metallurgy), 2017(11): 75−78.
[4] 张念, 冯君从. 未来10年我国锌资源需求展望[J]. 中国金属通报, 2016(2): 20−23.
ZHANG N, FENG J C. Outlook of China's zinc resource demand in the next 10 years[J]. China Metal Bulletin., 2016(2): 20−23.
[5] 敖顺福. 典型铅锌选矿厂废水零排放工艺对比分析[J]. 矿产保护与利用, 2021, 41(1): 38−45.
AO S F. Comparative analysis of zero discharge process of typical lead and zinc concentrator[J]. Conservation and Utilization of Mineral Resources, 2021, 41(1): 38−45.
[6] 樊鹏斌, 杨大军. 湿法炼锌过程除氟技术进展[J]. 湖南有色金属, 3033, 38(3): 29−32.
FAN P B, YAN D J. Progress of defluorination technology in zinc hydrometallurgy process[J]. Hunan Nonferrous Metals, 3033, 38(3): 29−32.
[7] 马菲菲. 熔铸收尘氧化锌湿法脱氯及综合回收试验[J]. 中国有色冶金, 2022, 51(2): 113−118.
MA F F. Experiment on wet dechlorination and comprehensive recovery of dust collected zinc oxide in melting and casting[J]. China Nonferrous Metallurgy, 2022, 51(2): 113−118.
[8] 张阳, 史丙丁, 马保中, 等. 酸性溶液除氯技术研究现状及进展[J]. 有色金属科学与工程, 2021, 12(5): 10−17.
ZHANG Y, SHI B D, MA B Z, et al. Research status and progress of acid solution dechlorination technology[J]. Nonferrous Metals Science and Engineering, 2021, 12(5): 10−17.
[9] 孙明生. 湿法炼锌废电解液除氯工艺研究与应用[J]. 有色金属(冶炼部分), 2017(11): 46−48.
SUN M S. Study and application of dechlorination of zinc waste electrolytes by hydrometallurgy[J]. Nonferrous Metals(Extractive Metallurgy), 2017(11): 46−48.
[10] HUANG S, LI L, Zhu N, et al. Removal and recovery of chloride ions in concentrated leachate by Bi(III) containing oxides quantum dots/two-dimensional flakes[J]. Journalof Hazardous Materials, 2020, 382: 121041. doi: 10.1016/j.jhazmat.2019.121041
[11] SHAN LW, WANG GL, LIU LZ, et al. Band alignment and enhanced photocatalytic activation for α-Bi2O3/BiOCl (001) core-shell heterojunction[J]. Journal of Molecular Catalysis A:Chemical, 2015, 406: 145−151. doi: 10.1016/j.molcata.2015.05.024
[12] 封志敏, 宁顺明, 王文娟, 等. 氧化铋法从硫酸锌溶液中除氯的研究[J]. 矿冶工程, 2015, 35(4): 63−66.
FEN Z M, NIN S M, WANG W J, et al. Study on the removal of chlorine from zinc sulfate solution by bismuth oxide method[J]. Mining and Metallurgical Engineering, 2015, 35(4): 63−66.
[13] 刘伟锋, 贾锐, 孙百奇, 等. 基于硫酸氧铋的硫酸锰溶液深度净化除氯的技术路线[J]. 中国有色金属学院, 2020, 30(3): 648−656.
LIU W F, JIA R, SUN B Q, et al. Technical route of deep purification and dechlorination of manganese sulfate solution based on bismuth oxysulfate[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(3): 648−656.
[14] 刘洪嶂, 雷胜, 张建学, 等. 湿法炼锌系统中氧化铋除氯产业化应用[J]. 中国有色冶金, 2018(6): 29−32. doi: 10.3969/j.issn.1672-6103.2018.06.009
LIU H Z, LEI S, ZHANG J X, et al. Study on the industrialization application of bismuth removal in zinc hydrometallurgy system[J]. China Nonferrous Metallurgy, 2018(6): 29−32. doi: 10.3969/j.issn.1672-6103.2018.06.009
[15] 吴文花, 刘吉波, 田思远, 等. 用氧化铋从锌电解液中除氯[J]. 湿法冶金, 2014, 33(6): 480−482.
WU W H, LIU J B, TIAN S Y, et al. Removal of chloride from zinc electrolyte with Bi2O3[J]. Hydrometallurgy of China, 2014, 33(6): 480−482.
[16] 吴文花, 刘吉波, 田思远, 等. 锌电解液除氯渣氯氧化铋再生循环使用研究[J]. 中国有色冶金, 2015(1): 71−73. doi: 10.3969/j.issn.1672-6103.2015.01.019
WU W H, LIU J B, TIAN S Y, et al. Research of regeneration and recycle use of BiOCl in chlorine removal slag of zinc eletrolyte[J]. China Nonferrous Metallurgy, 2015(1): 71−73. doi: 10.3969/j.issn.1672-6103.2015.01.019
[17] 吴岳, 黄寿强, 刘维桥. 废水除氯产物氯氧化铋的干法再生研究[J]. 江苏理工学院学报, 2021, 27(2): 72−80. doi: 10.3969/j.issn.1674-8522.2021.02.011
WU Y, HUANG S Q, LIU W Q. Dry regeneration of bismuth chloride oxide from chlorinated wastewater[J]. Journal of Jiangsu University of Technology, 2021, 27(2): 72−80. doi: 10.3969/j.issn.1674-8522.2021.02.011
-