煤油/油酸甲酯复配捕收剂浮选南梁煤矿煤泥的试验研究

陈嘉亮, 朱文耀, 常梦洁, 李会录, 刘俊. 煤油/油酸甲酯复配捕收剂浮选南梁煤矿煤泥的试验研究[J]. 矿产保护与利用, 2023, 43(2): 20-26. doi: 10.13779/j.cnki.issn1001-0076.2023.02.003
引用本文: 陈嘉亮, 朱文耀, 常梦洁, 李会录, 刘俊. 煤油/油酸甲酯复配捕收剂浮选南梁煤矿煤泥的试验研究[J]. 矿产保护与利用, 2023, 43(2): 20-26. doi: 10.13779/j.cnki.issn1001-0076.2023.02.003
CHEN Jialiang, ZHU Wenyao, CHANG Mengjie, LI Huilu, LIU Jun. Experimental Study on the Slime Flotation of Nanliang Coal Mine with Kerosene/methyl Oleate Compound Collectors[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 20-26. doi: 10.13779/j.cnki.issn1001-0076.2023.02.003
Citation: CHEN Jialiang, ZHU Wenyao, CHANG Mengjie, LI Huilu, LIU Jun. Experimental Study on the Slime Flotation of Nanliang Coal Mine with Kerosene/methyl Oleate Compound Collectors[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 20-26. doi: 10.13779/j.cnki.issn1001-0076.2023.02.003

煤油/油酸甲酯复配捕收剂浮选南梁煤矿煤泥的试验研究

  • 基金项目: 陕西省科技厅自然基金(2021JM-386, 2022JM-072)
详细信息
    作者简介: 陈嘉亮(1996—),男,甘肃甘谷人, 硕士生,煤泥浮选及综合利用,E-mail:1402428596@qq.com
    通讯作者: 刘俊,男,副教授,E-mail: jun_liu@xust.edu.cn
  • 中图分类号: TD923+.13;TD94

Experimental Study on the Slime Flotation of Nanliang Coal Mine with Kerosene/methyl Oleate Compound Collectors

More Information
  • 陕西省南梁煤矿现有浮选生产药剂成本较高,占选厂总成本的84.5%;另外试验发现GF、FO等复配捕收剂能一定程度上提高浮选效率,但其药剂用量仍然较高。为了进一步提高浮选效率、降低药剂用量、节约成本、提高经济效益,系统研究了复配捕收剂对煤泥浮选效果。以仲辛醇为起泡剂,煤油分别与正辛胺、正癸酸、十二烷、油酸甲酯复配作为捕收剂,对粒度大于0.0385 mm的煤泥进行浮选试验。结果表明,油酸甲酯与煤油质量比为1∶6时,浮选结果最佳,精煤产率由煤油的43.14%提高到复配捕收剂的61.70%,对应的灰分由9.50%变为9.61%,可燃体回收率由42.98%提高到61.48%。煤油/油酸甲酯复配捕收剂优异的浮选效果可归因于油酸甲酸含氧酯基与煤分子上的含氧官能团作用时较高的润湿热和吸附能、较低的前线轨道能隙,更易吸附在煤表面,提高煤的疏水性。X射线衍射、红外光谱和扫描电镜测试结果表明,与煤泥相比,浮选后的精煤中灰分明显减少,只有少量细泥颗粒附着于煤颗粒表面,说明油酸甲酯复配与煤油是一种理想的煤泥浮选捕收剂。

  • 加载中
  • 图 1  不同正辛胺和煤油复配质量比的浮选结果

    Figure 1. 

    图 2  不同正癸酸和煤油复配质量比的浮选结果

    Figure 2. 

    图 3  不同十二烷和煤油复配质量比的浮选结果

    Figure 3. 

    图 4  不同油酸甲酯和煤油复配质量比的浮选结果

    Figure 4. 

    图 5  不同倍数的煤泥(a、b)和精煤(c、d)样品的SEM照片

    Figure 5. 

    图 6  精煤样品的能谱分析

    Figure 6. 

    图 7  精煤样品(a)的元素面扫描结果:Si(b),O(c),Al(d),C(e),P(f),S(g)

    Figure 7. 

    图 8  煤泥(a)与精煤(b)的XRD衍射图谱

    Figure 8. 

    图 9  煤泥(a)与精煤(b)的红外光谱图

    Figure 9. 

    图 10  煤泥(a),煤油(b)与复配捕收剂(b)浮选精煤的接触角

    Figure 10. 

    表 1  煤泥工业分析

    Table 1.  Industrial analysis of coal samples /%

    MadAadVadFCad
    4.856.0612.4426.70
    注:MadAadVadFCad分别代表空气干燥煤样的水分含量、干燥煤样灰分含量、干燥煤样的挥发分含量、煤样固定碳含量。
    下载: 导出CSV

    表 2  煤泥筛分试验结果

    Table 2.  Results of small screening test of slime

    粒级/mm质量/g产率/%灰分/%筛上累积/%
    产率灰分
    +0.5009.964.9850.274.9850.27
    0.500~0.2524.4812.2444.8717.2243.40
    0.25~0.12520.0710.0432.5027.2642.36
    0.125~0.07514.097.0529.1034.3040.90
    0.075~0.04512.366.1837.7640.4837.82
    −0.045119.0459.5266.19100.0056.06
    合计200100.0056.06
    下载: 导出CSV
  • [1]

    CHEN Y, HU S, LI J, et al. Improvement on combustible matter recovery in coal slime flotation with the addition of sodium silicate[J]. Colloids Surf. A, 2020, 603(2): 125−220.

    [2]

    XIE W, CAO G, REN X, et al. Effect of flotation promoter on the rate of coal slime flotation[J]. J. Min. Sci, 2014, 50(1): 601−607.

    [3]

    KOPPARTHI P, BALAMURUGAN S, MUKHERJEE A K. Effect of ultrasonic pre-treatment time on coal flotation[J]. Int. J. Coal Prep. Util, 2017, 40(4): 807−823.

    [4]

    ZHU J, ZHU H, WANG H, et al. Effects of diesel and 2-octanol on water-carrying properties and ultrafine coal flotation[J]. International Journal of Coal Preparation and Utilization, 2018, 41(6): 98−107.

    [5]

    FU Y, LI H, MEI H, et al. Organic contaminant removal with no adsorbent recycling based on microstructure modification in coal slime filtration[J]. Fuel, 2021, 288(5): 119−630.

    [6]

    马爱鹏. 复配捕收剂对高灰细粒煤泥浮选效果的影响研究[J]. 煤, 2021(1): 95−97. doi: 10.3969/j.issn.1005-2798.2021.01.033

    MA A P. Study on the effect of complex collectors on the flotation of high ash fine coal slime[J]. Coal, 2021(1): 95−97. doi: 10.3969/j.issn.1005-2798.2021.01.033

    [7]

    高文宇. 煤炭浮选药剂的筛选、优化及工业应用试验研究[D]. 天津: 天津大学, 2019.

    Gao W Y. The Study of the screening, optimization and industrial application of coal flotation agent [D]. Tianjin: Tianjin University, 2019.

    [8]

    王力强. 油酸与煤油复配作捕收剂对难浮煤泥浮选提质的探究[J]. 煤炭加工与综合利用, 2018(11): 41−43. doi: 10.16200/j.cnki.11-2627/td.2018.11.011

    WANG L Q. Study on the concentrate quality improvement of difficult-to float slime flotation using the compounding collector of oleic acid and kerosene[J]. Coal Processing & Comprehensive Utilization, 2018(11): 41−43. doi: 10.16200/j.cnki.11-2627/td.2018.11.011

    [9]

    王晖, 李志红, 樊民强. 正十二酸对朔州低阶煤泥浮选的促进作用研究[J]. 山西煤焦科技, 2020(7): 4−7.

    WANG H, LI Z H, FAN M Q. Study on promotion of dodecanoic acid on flotation of low-grade coal slime in shuozhou[J]. Shanxi Coking Coal Science & Technology, 2020(7): 4−7.

    [10]

    王东岳. 极性复配捕收剂对低阶煤浮选的研究[D]. 徐州: 中国矿业大学, 2018.

    WANG D Y. Compound polar collector in low rank coal flotation [D]. Xuzhou: China University of Mining and Technology, 2018.

    [11]

    任聪, 樊民强, 李志红, 等. 复配药剂浮选低阶煤泥的效能研究[J]. 煤炭科学技术, 2020(48): 242−247.

    REN C, FAN M Q, LI Z H, et al. Efficiency of compound reagents flotation of low-rank coal slime[J]. Coal Science and Technology, 2020(48): 242−247.

    [12]

    刘文欣, 沈阳, 马志国. 南梁选煤厂利用微泡浮选柱回收低阶煤泥的生产实践[J]. 煤炭加工与综合利用, 2021(8): 1−9.

    LIU W X, SHEN Y, MA Z G. Production practice of recycling low rank slime with micro bubble flotation column in Nanliang Coal Preparation Plant[J]. Coal Processing & Comprehensive Utilization, 2021(8): 1−9.

    [13]

    CAI Y, DU M, WANG S, et al. Flotation characteristics of oxidized coal slimes within low-rank metamorphic[J]. Powder Technol, 2018, 340(5): 34−38.

    [14]

    XU M, XING Y, LI M, et al. Oxidized coal flotation enhanced by adding n-octylamine[J]. Energy Sources Part A, 2018, 40(2): 2394−2399.

    [15]

    成浩, 杨亚平, 蔡晋强. 细粒级难选煤用FO合成浮选药剂的研究[J]. 煤炭加工与综合利用, 1998(2): 27−31.

    CHENG H, YANG Y P, CAI J Q. Study on FO synthesis flotation agents for fine grade refractory coal[J]. Coal Processing & Comprehensive Utilization, 1998(2): 27−31.

    [16]

    任聪. 基于油酸甲酯的煤泥浮选复配捕收剂研究[D]. 山西: 太原理工大学, 2019.

    REN C. Research on coal slime flotation compound collector based on methyl oleate [D]. Shanxi: Taiyuan University of Technology, 2019

    [17]

    李昀霞, 贾国兴, 邢海明, 等. 超细化和煅烧处理高岭土的遮盖力研究[J]. 建材技术与应用, 2021(10): 1−3. doi: 10.3969/j.issn.1009-9441.2021.05.002

    LI Y X, JIA G X, XING H M, et al. Study on covering power of ultra refined and calcined kaolin[J]. Research & Application of Building Materials, 2021(10): 1−3. doi: 10.3969/j.issn.1009-9441.2021.05.002

    [18]

    NI C, BU X, XIA W, et al. Effect of slimes on the flotation recovery and kinetics of coal particles[J]. Fuel, 2018, 220(3): 159−166.

    [19]

    RONG G, XU M, WANG D, et al. Effect of heating oxidation on the surface/interface properties and floatability of anthracite coal[J]. Processes, 2019, 7(6): 345−354. doi: 10.3390/pr7060345

    [20]

    HE J, LIU C, YAO Y. Flotation intensification of the coal slime using a new compound collector and the interaction mechanism between the reagent and coal surface[J]. Powder Technol., 2018, 325(9): 333−339.

    [21]

    杨策. 应用近红外光谱技术分析煤质成分[D]. 北京: 华北电力大学, 2017.

    YANG C. Analysis of coal properties by near infrared spectroscopy [D]. Beijing: North China Electric Power University, 2017.

  • 加载中

(10)

(2)

计量
  • 文章访问数:  169
  • PDF下载数:  9
  • 施引文献:  0
出版历程
收稿日期:  2022-07-02
录用日期:  2022-07-02
刊出日期:  2023-04-25

目录