组合捕收剂强化回收普朗含泥微细粒硫化铜矿试验及机理分析

张洋, 崔毅琦, 蓝卓越, 席欣月, 黄典强, 童雄, 王靖. 组合捕收剂强化回收普朗含泥微细粒硫化铜矿试验及机理分析[J]. 矿产保护与利用, 2023, 43(2): 27-34. doi: 10.13779/j.cnki.issn1001-0076.2023.02.004
引用本文: 张洋, 崔毅琦, 蓝卓越, 席欣月, 黄典强, 童雄, 王靖. 组合捕收剂强化回收普朗含泥微细粒硫化铜矿试验及机理分析[J]. 矿产保护与利用, 2023, 43(2): 27-34. doi: 10.13779/j.cnki.issn1001-0076.2023.02.004
ZHANG Yang, CUI Yiqi, LAN Zhuoyue, XI Xinyue, HUANG Dianqiang, TONG Xiong, WANG Jing. Experiment and Mechanism Analysis of Enhanced Recycling Mud-containing Fine-grained Copper Sulfide Ore of Pulang by Combined Collectors[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 27-34. doi: 10.13779/j.cnki.issn1001-0076.2023.02.004
Citation: ZHANG Yang, CUI Yiqi, LAN Zhuoyue, XI Xinyue, HUANG Dianqiang, TONG Xiong, WANG Jing. Experiment and Mechanism Analysis of Enhanced Recycling Mud-containing Fine-grained Copper Sulfide Ore of Pulang by Combined Collectors[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 27-34. doi: 10.13779/j.cnki.issn1001-0076.2023.02.004

组合捕收剂强化回收普朗含泥微细粒硫化铜矿试验及机理分析

  • 基金项目: 国家自然科学基金(5196040249);云南省重大科技项目(202202AG050010);云南省科技计划项目(202202AB080012)
详细信息
    作者简介: 张洋(2000—),男,安徽六安人,硕士研究生,主要从事浮选理论与工艺
    通讯作者: 崔毅琦(1980—),女,河南南阳人,博士,教授,从事稀贵金属选冶、尾矿资源综合利用等研究,E-mail:cuiyq111@126.com
  • 中图分类号: TD923+.13;TD952.1

Experiment and Mechanism Analysis of Enhanced Recycling Mud-containing Fine-grained Copper Sulfide Ore of Pulang by Combined Collectors

More Information
  • 香格里拉普朗硫化铜矿石含泥量高、铜嵌布粒度细,现场采用烃类油捕收剂MCO,铜回收效果欠佳。因此在研究矿石性质的基础上,进行了捕收剂优化研究及机理分析。研究结果表明,原矿铜品位为0.396%,主要含铜矿物为黄铜矿,嵌布粒度细;脉石矿物主要为石英、绿泥石、斜长石等,泥化程度高。通过药剂优化试验,使用MCO+CO100+250-A为组合捕收剂(用量36+4.5+2.5 g/t),浮选闭路试验最终获得的铜精矿品位为23.41%,回收率为82.15%,与现场药剂效果相比,精矿Cu品位升高了0.19百分点,回收率增加了4.36百分点。单矿物浮选试验和机理研究结果表明,MCO与组合捕收剂在黄铜矿表面的吸附方式均为化学吸附,与MCO相比,组合捕收剂能显著降低药剂与矿物表面的静电斥力,显著提高药剂在黄铜矿表面的吸附强度。该组合捕收剂选择性高、捕收能力强,对含泥微细粒硫化铜矿具有较好的浮选效果。

  • 加载中
  • 图 1  X-射线衍射分析结果

    Figure 1. 

    图 2  黄铜矿样品XRD分析结果

    Figure 2. 

    图 3  药剂优化试验结果

    Figure 3. 

    图 4  闭路试验流程

    Figure 4. 

    图 5  捕收剂用量对黄铜矿浮选行为的影响

    Figure 5. 

    图 6  黄铜矿表面Zeta电位与pH值的关系

    Figure 6. 

    图 7  药剂浓度与黄铜矿表面药剂吸附量的关系

    Figure 7. 

    图 8  红外光谱图

    Figure 8. 

    表 1  化学元素分析结果

    Table 1.  Results of chemical element analysis

    元素CuMoFeSiO2Al2O3S
    含量/%0.3960.0072.3863.5014.340.585
    下载: 导出CSV

    表 2  矿样铜物相分析

    Table 2.  Phase analysis of Cu in raw ore samples /%

    铜物相原生硫化铜次生硫化铜游离氧化铜结合氧化铜合计
    含量0.400.01<0.0050<0.00500.41
    分布率97.562.44100.00
    下载: 导出CSV

    表 3  各粒级铜分布率

    Table 3.  Distribution of copper in each grade

    粒级/μm产率/%Cu品位/%Cu分布率/%
    +15012.270.175.16
    −150+7427.590.2718.30
    −74+4813.820.4114.06
    −48+389.890.6415.74
    −3836.430.5246.73
    合计100.000.40100.00
    下载: 导出CSV

    表 4  MCO和组合捕收剂闭路试验结果

    Table 4.  Results of closed-circuit test of MCO and combined collectors /%

    捕收剂产品名称产率Cu品位Cu 回收率
    MCO精矿1.0923.21677.79
    尾矿98.910.07322.21
    原矿100.000.325100.00
    CY-1精矿1.1423.40682.15
    尾矿98.860.05817.85
    原矿100.000.324100.00
    下载: 导出CSV

    表 5  不同捕收剂下尾矿的粒度分析及铜在各粒级中的分布结果

    Table 5.  Particle size analysis of tailings with different collectors and copper distribution in each particle size

    捕收剂粒级/μm产率/%Cu 品位/%Cu 分布率/%
    MCO+15012.610.07613.36
    −150+7421.660.04513.41
    −74+4814.130.0407.83
    −48+3810.140.0385.29
    −3841.460.10460.12
    合计100.000.072100.00
    CY-1+1508.830.08512.61
    −150+7426.720.04419.77
    −74+4816.500.03910.82
    −48+389.710.0213.43
    −3838.240.08353.37
    合计100.000.059100.00
    下载: 导出CSV

    表 6  捕收剂种类对黄铜矿表面接触角的影响

    Table 6.  Influence of collector types on chalcopyrite surface contact angle

    处理条件无药剂MCOCY-1
    图像
    平均接触角/(°)76.6685.9888.28
    下载: 导出CSV
  • [1]

    陈甲斌, 梁振杰, 高鹏. 中国铜资源现状与发展战略研究[J]. 世界有色金属, 2005(12): 8−11.

    CHEN J B, LIANG Z J, GAO P. Research on current situation and development strategy of copper resources in China[J]. World Nonferrous Metals, 2005(12): 8−11.

    [2]

    CARLITO B T, ILHWAN P, THEERAYUT P, et al. Copper and critical metals production from porphyry ores and E-wastes: A review of resource availability, processing /recycling challenges, socio-environmental aspects, and sustainability issues[J]. Resources, Conservation and Recycling, 2021, 170: 105610. doi: 10.1016/j.resconrec.2021.105610

    [3]

    姚伟, 李茂林, 崔瑞, 等. 微细粒矿物的分选技术[J]. 现代矿业, 2015(1): 66−69+152.

    YAO W, LI M L, CUI R, et al. Separation technology of fine grained minerals[J]. Modern Mining, 2015(1): 66−69+152.

    [4]

    WEI Z, HU Y, HAN H et al. Selective separation of scheelite from calcite by selfassembly of H2SiO3 polymer using Al3+ in Pb-BHA flotation[J]. Minerals, 2019, 9(1): 43.

    [5]

    陈文胜, 付君浩, 韩海生, 等. 微细粒矿物分选技术研究进展[J]. 矿产保护与利用, 2020, 40(4): 134−145.

    CHEN W S, FU J H, HAN H S, et al. Research progress of fine mineral separation technology[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 134−145.

    [6]

    FORBES. E. Shear, selective and temperature responsive flocculation: A comparison of fine particle flotation techniques[J]. International Journal of Mineral Processing, 2011, 99(1/4): 1−10.

    [7]

    秦煦坤, 钱玉鹏, 高惠民, 等. 剪切絮凝强化浮选微细粒红柱石试验[J]. 金属矿山, 2017(9): 115−119.

    QIN X K, QIAN Y P, GAO H M, et al. Experiment of shear flocculation strengthening flotation of fine andalusite[J]. Metal Mine, 2017(9): 115−119.

    [8]

    HUANG X, XIAO W, ZHAO H, et al. Hydrophobic flocculation flotation of rutile fines in presence of styryl phosphonic acid[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(7): 1424−1432. doi: 10.1016/S1003-6326(18)64781-8

    [9]

    CHEN W, CHEN F, BU X, et al. A significant improvement of fine scheelite flotation through rheological control of flotation pulp by using garnet[J]. Minerals Engineering, 2019, 138: 257−266. doi: 10.1016/j.mineng.2019.05.001

    [10]

    HAO H, LI L, SOMASUNDARAN P, et al. Adsorption of pregelatinized starch for selective flocculation and flotation of fine siderite[J]. Langmuir, 2019, 35(21): 6878−6887. doi: 10.1021/acs.langmuir.9b00669

    [11]

    杨招君, 徐晓衣, 袁祥奕. 低品位锡细泥选择性絮凝浮选试验研究[J]. 中国矿业, 2019, 28(z1): 212−215+219.

    YANG Z J, XU X Y, YUAN X Y. Experimental study on selective flocculation flotation of low grade tin slime[J]. China Mining Industry, 2019, 28(z1): 212−215+219.

    [12]

    ZOU W, GONG L, HUANG J, et al. Adsorption of hydrophobically modified polyacrylamide P(AM-NaAA-C16DMAAC) on model coal and clay surfaces and the effect on selective flocculation of fine coal[J]. Minerals Engineering, 2019, 142: 105887. doi: 10.1016/j.mineng.2019.105887

    [13]

    LI L, HAO H, YUAN Z, et al. Regulating effects of citric acid and pregelatinized starch on selective flocculation flotation of microfine siderite[J]. Journal of Molecular Liquids, 2020, 315: 113726. doi: 10.1016/j.molliq.2020.113726

    [14]

    陈秀珍. 疏水性聚合物对细粒级白钨矿载体浮选工艺和机理研究[D]. 长沙: 中南大学, 2014.

    CHEN X Z. Research on flotation technology and Mechanism of hydrophobic polymer for fine scheelite [D]. Changsha: Central South University, 2014.

    [15]

    ZHOU S, WANG X, BU X, et al. A novel flotation technique combining carrier flotation and cavitation bubbles to enhance separation efficiency of ultrafine particles[J]. Ultrasonics Sonochemistry, 2020, 64: 105005.

    [16]

    ZHANG X, HU Y, SUN W, et al. The effect of polystyrene on the car- rier flotation of fine smithsonite[J]. Minerals, 2017, 7: 524.

    [17]

    XING Y, GUI X, PAN L, et al. Recent experimental advances for understanding bubble-particle attachment in flotation[J]. Advances in Colloid and Interface Science, 2017, 246: 105−132. doi: 10.1016/j.cis.2017.05.019

    [18]

    何桂春, 王玉彤, 康倩. 纳米技术在微细粒矿物浮选中的应用[J]. 有色金属科学与工程, 2015, 6(2): 57−62.

    HE G C, WANG Y T, KANG Q. Application of nanotechnology in the flotation of fine minerals[J]. Nonferrous Metals Science and Engineering, 2015, 6(2): 57−62.

    [19]

    FARROKHPAY S, FILIPPOVA I, FILIPPOVA L, et al. Flotation of fine particles in the presence of combined microbubbles and conventional bubbles[J]. Minerals Engineering, 2020, 155: 106439. doi: 10.1016/j.mineng.2020.106439

    [20]

    R A F, RUBIO J. On the role of nanobubbles in particle-bubble adhesion for the flotation of quartz and apatitic minerals[J]. Minerals Engineering, 2018, 127: 178−184. doi: 10.1016/j.mineng.2018.08.020

    [21]

    廖世双, 欧乐明, 周伟光. 空化过程微纳米气泡性质及其对细粒矿物浮选的影响[J]. 中国有色金属学报, 2019, 29(7): 1567−1574.

    LIAO S S, OU L M, ZHOU W G. Properties of micro-nano bubbles in cavitation process and their effect on fine mineral flotation[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(7): 1567−1574.

    [22]

    XING Y, XU M, GUO F, et al. Role of different types of clay in the floatability of coal: Induction time and bubble-particle attachment kinetics analysis[J]. Powder Technology, 2019, 344: 814−818. doi: 10.1016/j.powtec.2018.12.074

    [23]

    陈明波, 郑其方, 赵荣, 等. 云锡某硫化铜新型组合捕收剂浮选试验研究[J]. 有色金属工程, 2022, 12(6): 130−134.

    CHEN M B, ZHENG Q F, ZHAO R, et al. Flotation test study of a new combined copper sulfide collector in Yunxi[J]. Nonferrous Metals Engineering, 2022, 12(6): 130−134.

    [24]

    何庆浪, 韩彬, 童雄, 等. 组合捕收剂浮选低品位铜矿的试验研究[J]. 矿产保护与利用, 2015(5): 29−33.

    HE Q L, HAN B, TONG X, et al. Experimental study on flotation of low-grade copper ore by combined trap[J]. Conservation and Utilization of Mineral Resources, 2015(5): 29−33.

    [25]

    徐龙华, 田佳, 巫侯琴, 等. 组合捕收剂在矿物表面的协同效应及其浮选应用综述[J]. 矿产保护与利用, 2017(2): 107−112.

    XU L H, TIAN J, WU H Q, et al. Synergistic effect of combined collectors on mineral surface and its flotation application[J]. Conservation and Utilization of Mineral Resources, 2017(2): 107−112.

    [26]

    BULATOVIC S M. Flotation of Copper Sulfide Ores[M]. 2007.

    [27]

    张闿. 浮选药剂的组合使用[M]. 北京: 冶金工业出版社, 1994.

    ZHANG K. Study on combination of flotation reagents[M]. Beijing: Metallurgical Industry Press, 1994.

    [28]

    陈慧. 复配捕收剂在难选胶磷矿浮选中的性能研究[D]. 武汉: 武汉工程大学, 2010.

    CHEN H. Study on Performance of complex collector in flotation of refractory Collophosphate [D]. Wuhan: Wuhan Institute of Technology, 2010.

    [29]

    张启梁. 非极性烃类药剂浮选云山石墨的试验研究[D]. 哈尔滨: 黑龙江科技大学, 2014.

    ZHANG Q L. Experimental study on flotation of Yunshan graphite with non-polar hydrocarbon agents [D]. Harbin: Heilongjiang University of Science and Technology, 2014.

    [30]

    宛鹤, 何廷树, 杨剑波, 等. 基于脂肪烃的复合烃油捕收剂改善选钼效果的试验研究[J]. 有色金属工程, 2017, 7(4): 58−63.

    WAN H, HE T S, YANG J B, et al. Experimental study on the improvement of molybdenum separation by complex hydrocarbon oil collector based on aliphatic hydrocarbon[J]. Nonferrous Metals Engineering, 2017, 7(4): 58−63.

    [31]

    吴海祥. 低碱度下黄铁矿与黄铜矿的浮选分离试验研究[D]. 昆明: 昆明理工大学, 2021.

    WU H X. Flotation separation of pyrite and chalcopyrite at low alkalinity[D]. Kunming: Kunming University of Science and Technology, 2021.

    [32]

    WANG L, SUN W, HU Y H, et al. Adsorption mechanism of mixed anionic/cationic collectors in Muscovite – Quartz flotation system[J]. Minerals Engineering, 2014, 64: 44−50. doi: 10.1016/j.mineng.2014.03.021

    [33]

    舒开倩. 阴阳离子组合捕收剂对锂辉石矿的强化浮选分离及作用机理研究[D]. 绵阳: 西南科技大学, 2021.

    SHU K Q. Study on enhanced flotation separation and action mechanism of spodumene ore by combined cation and anion collector [D]. Mianyang: Southwest University of Science and Technology, 2021.

    [34]

    荆煦瑛, 陈式棣, 么恩云. 红外光谱实用指南[M]. 天津: 天津科学技术出版社, 1992.

    JING X Y, CHEN S D, YAO E Y. Practical guide of infrared spectroscopy [M]. Tianjin: Tianjin Science and Technology Press, 1992.

  • 加载中

(8)

(6)

计量
  • 文章访问数:  284
  • PDF下载数:  36
  • 施引文献:  0
出版历程
收稿日期:  2023-03-03
刊出日期:  2023-04-25

目录