Experimental Study on Flotation of Apatite Ore with Modified Waste Engine Oil at Room Temperature
-
摘要:
为减轻废机油对环境的污染,以废机油为基础,经氧化改性制得新型捕收剂,并考察了其在低品位磷灰石矿浮选中的应用情况。以重铬酸钾为氧化剂,在通气量为0.15 m3/h、氧化时间为24 h、氧化温度为110 ℃、重铬酸钾用量为废机油质量的0.2%时,获得最佳的氧化效果。红外光谱和气质联用分析结果表明,经氧化改性后,废机油中的C=C双键部分被氧化为羟基和羧基等官能团,属于脂肪酸类捕收剂。实际矿石分选结果表明,针对P2O5品位为1.72%的某磷灰石矿,在矿浆温度为15 ℃的条件下,当水玻璃用量2000 g/t、改性废机油捕收剂用量400 g/t时取得较好的分选效果,经一次粗选可获得精矿P2O5品位为26.01%、精矿回收率为95.12%的磷灰石精矿,并且在15~40 ℃温度范围内,浮选效果基本一致。经氧化改性的废机油可作为磷灰石潜在的浮选捕收剂。
Abstract:In order to reduce the environmental pollution caused by waste engine oil, a novel collector was prepared based on waste engine oil by oxidation modification, and its application in flotation of low-grade apatite ore was investigated. The best oxidation effect was obtained at the aeration rate of 0.15 m3/h, the oxidation time of 24 h, the oxidation temperature of 110 ℃, and the potassium dichromate of 0.2%. The analysis results of IR and GC−MS showed that the C=C double bond in the waste engine oil was oxidized into hydroxyl and carboxyl groups after oxidation modification, which belonged to fatty acid collectors. The results showed that a good separation effect was obtained for the actual ore at the sodium silicate of 2000 g/t, the modified waste engine oil collector of 400 g/t, and the pulp temperature of 15 ℃. Apatite concentrates with P2O5 grade of 26.01% and recovery of 95.12% was obtained by one−step roughing, and the flotation effect was basically the same in the temperature range of 15−40 ℃. Oxidation modified waste engine oil would be used as a potential flotation collector for apatite.
-
Key words:
- waste engine oil /
- oxidation modification /
- collector /
- apatite /
- flotation
-
-
表 1 磷灰石纯矿物化学多元素分析
Table 1. Chemical multielement analysis of apatite pure mineral
成分 P2O5 SiO2 Fe2O3 Al2O3 CaO MgO Na2O F 含量/% 38.41 1.08 0.04 0.23 54.31 0.13 3.25 2.55 表 2 磷灰石实际矿样化学多元素分析
Table 2. Chemical multielement analysis of apatite actual mineral
成分 P2O5 SiO2 Fe2O3 Al2O3 CaO MgO Na2O K2O SO3 含量/% 1.72 47.47 7.68 14.03 7.19 4.76 3.25 2.08 0.26 -
[1] 冀伟昌, 段海霞, 王发, 等. 废机油酸洗剂和再生工艺研究[J]. 资源节约与环保, 2021(1): 5−6.
JI W C, DUAN H X, WANG F, et al. Study on oleic acid lotion and regeneration process of waste machine[J]. Resource Conservation and Environmental Protection, 2021(1): 5−6.
[2] 王兴涛, 秦涛, 刘军海. 废润滑油回收工艺研究进展[J]. 内蒙古环境科学, 2009, 21(5): 77−80.
WANG X T, QIN T, LIU J H. Research progress of waste lubricating oil recovery process[J]. Inner Mongolia Environmental Science, 2009, 21(5): 77−80.
[3] 常剑, 樊保龙, 余德运, 等. 废机油在现场混装乳化炸药中的资源化应用研究[J]. 爆破器材, 2022, 51(1): 40−45.
CHANG J, FAN B L, YU D Y, et al. Research on resource application of waste oil in field mixed emulsion explosive[J]. Blasting Equipment, 2022, 51(1): 40−45.
[4] 吴文静. 工厂废机油回收的新方法[J]. 宁波大学学报(理工版), 2004(2): 223−226.
WU W J. New method of waste oil recovery in factory[J]. Journal of Ningbo University (Science & Technology Edition), 2004(2): 223−226.
[5] 廖寅飞, 杨哲, 刘泽晨, 等. 一种废机油类的低阶煤捕收剂的氧化改良方法: CN113546598A[P]. 2021−10−26.
LIAO Y F, YANG Z, LIU Z C, et al. An improved oxidation method of low rank coal collector of waste oil : CN113546598A[P]. 2021−10−26.
[6] 马云飞, 刘大学, 许玮珑, 等. 交通运输业废机油再生现状与关键技术研究[J]. 中国资源综合利用, 2010, 28(11): 25−29.
MA Y F, LIU D X, XU W L, et al. Research on current situation and key technologies of waste oil regeneration in transportation industry[J]. China Resources Comprehensive Utilization, 2010, 28(11): 25−29.
[7] 白雪松, 于殿名. 国内外润滑油基础油市场供求情况及需求预测[J]. 化工技术经济, 2007(1): 28−34.
BAI X S, YU D M. Market supply and demand situation and demand forecast of lubricating oil base oil at home and abroad[J]. Chemical Technology & Economics, 2007(1): 28−34.
[8] 张琳. 模拟放射性废机油的电化学高级氧化处理研究[D]. 绵阳: 西南科技大学, 2019.
ZHANG L. Electrochemical advanced oxidation treatment of simulated radioactive waste oil [D]. Mianyang: Southwest University of Science and Technology, 2019.
[9] 张康. 废机油的直接资源化利用及改性分级利用研究[D]. 太原: 太原理工大学, 2018.
ZHANG K. Research on direct resource utilization and modified grading utilization of waste oil [D]. Taiyuan: Taiyuan University of Technology, 2018.
[10] 吴彩斌, 段希祥. 我国磷矿石的处理工艺研究[J]. 云南冶金, 2000(4): 19−22.
WU C B, DUAN X X. Study on the treatment technology of phosphate ore in China[J]. Yunnan Metallurgy, 2000(4): 19−22.
[11] 潘志权, 沈博玮. 基于脂肪酸的磷矿捕收剂的研制与应用进展[J]. 武汉工程大学学报, 2016, 38(1): 1−9.
PAN Z Q, SHEN B W. Development and application of phosphate ore collector based on fatty acid[J]. Journal of Wuhan Institute of Technology, 2016, 38(1): 1−9.
[12] MARIEVL L, SIGNOLLE J P, AMIEL C, et al. Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics[J]. Vibrational Spectroscopy, 2001, 26(2): 151−159. doi: 10.1016/S0924-2031(01)00113-8
[13] 葛英勇, 张元龙, 李洪强, 等. 深度氧化脂肪酸MG-2浮选胶磷矿的性能及机理[J]. 武汉理工大学学报, 2011, 33(6): 111−115.
GE Y Y, ZHANG Y L, LI H Q, et al. Performance and mechanism of collophane flotation by deep oxidation fatty acid MG-2[J]. Journal of Wuhan University of Technology, 2011, 33(6): 111−115.
[14] 朱顺伟, 李孝龙, 李永利, 等. 新型捕收剂在尾矿中赤铁矿回收的应用试验[J]. 烧结球团, 2022, 47(4): 71−76.
ZHU S W, LI X L, LI Y L, et al. Application test of new collector in hematite recovery from tailings[J]. Journal of Sinter Pellets, 2022, 47(4): 71−76.
-