Effect of Metal Cations on the Kerosene/Water Interfacial Tension in Flotation Conditioning
-
摘要:
为了探究金属阳离子在煤油/水界面扩散机制及其对油/水界面张力的影响规律,试验利用分子动力学模拟、界面静力学平衡分析和高速摄像动态采集测试技术,研究了不同浓度和离子价态的Na+、Mg2+和Al3+在煤油/水界面迁移规律与对煤油/水界面张力的影响机制。界面张力测试分析结果表明离子溶液与煤油间的界面张力随离子价态的增加而降低。同时分子动力学模拟与静力学分析的结果表明煤油在油/水界面表现出两亲性,其中羟基朝向水分子,而烷基链朝向煤油分子。进入煤油分子空隙的水分子数量随水中离子数量的增加而增加。油滴等效直径随离子价态的增加而增加,油滴需要更多的内能突破油/水界面的表面能,导致油滴体积增大,即
>< span class="inline-formula-span" > ${{d}_{{{{\rm{Al}}}^{3+}}}}$ < /span > < img text_id='' class='formula-img' style='display:none;' src='2023-03-0020_Z-20230602102902.png'/ > >< span class="inline-formula-span" > ${{d}_{{{{\rm{Mg}}}^{2+}}}} $ < /span > < img text_id='' class='formula-img' style='display:none;' src='2023-03-0020_Z-20230602102928.png'/ > 。试验研究结果为浮选过程中及时调整金属阳离子种类及浓度,消除不利于浮选性能的金属离子,提高浮选效率提供了一定的理论支撑。< span class="inline-formula-span" > ${{d}_{{{{\rm{Na}}}^{+}}}} $ < /span > < img text_id='' class='formula-img' style='display:none;' src='2023-03-0020_Z-20230602102940.png'/ > Abstract:In order to investigate the mechanism of metal cation diffusion at the kerosene/water interface and its effect on the oil/water interfacial tension, the migration patterns of Na+, Mg2+ and Al3+ with different concentrations and ionic valence states at the kerosene/water interface and the effect mechanism on the kerosene/water interfacial tension were investigated, using molecular dynamics simulation, interfacial static equilibrium analysis and high-speed camera dynamic acquisition test techniques. The results of the interfacial tension test showed that the interfacial tension between ionic solution and kerosene decreased with the increase of ionic valence state. Meanwhile, the results of molecular dynamics simulation and hydrostatic analysis showed that kerosene exhibited amphiphilicity at the oil/water interface, where the hydroxyl groups were directed toward the water molecules and the alkyl chains were directed toward the kerosene molecules. The number of water molecules entering the molecular gap of kerosene increased with the number of ions in water. The equivalent diameter of oil droplets increased with the increase of ionic valence, and oil droplets needed more internal energy to break through the surface energy of the oil/water interface, resulting in an increase of oil droplet volume, i.e. dAl3+ > dMg2+ > dNa+. The experimental results provide some theoretical support for the timely adjustment of metal cation types and concentrations in the flotation process, elimination of metal ions unfavorable to flotation performance, and improvement of flotation efficiency.
-
Key words:
- flotation conditioning /
- metal cations /
- kerosene /
- interfacial tension /
- ionic hydration
-
-
表 1 煤油组分
Table 1. Kerosene components
成分 C16H26O3 C17H36 C19H36 C16H33OH C18H33OH C9H16BrNO C7H15OH C12H26O 其他 含量/% 30.196 25.869 20.196 16.495 5.897 0.218 0.049 0.048 0.005 表 2 去离子水和煤油的基本参数
Table 2. Basic parameters of deionized water and kerosene
界面 界面张力
/(mN∙m−1)溶液密度
/ (g∙cm−3)液体动态黏度
/(mPa∙s)去离子水/气 72.0 0.99 1.00 煤油/气 30.0 0.80 2.20 去离子水/煤油 41.8 0.99/0.80 1.00/2.20 -
[1] 桂夏辉, 邢耀文, 曹亦俊, 等. 低品质煤泥浮选过程强化研究进展及其思考[J]. 煤炭学报, 2021, 46(9): 2715−2732. doi: 10.13225/j.cnki.jccs.FX21.1325
GUI X H, XING Y W, CAO Y J, et al. Recent advances and thinking in process intensification of low quality coal slime flotation[J]. Journal of china coal society, 2021, 46(9): 2715−2732. doi: 10.13225/j.cnki.jccs.FX21.1325
[2] 郭文珍, 邓小伟, 吕波, 等. 基于高效浮选法的中低变质烟煤深度脱灰技术研究[J]. 煤炭技术, 2023, 42(2): 221−224. doi: 10.13301/j.cnki.ct.2023.02.054
GUO W Z, DENG X W, LV B, et al. Research on deep deashing technology of medium and low metamorphic bituminous coal based on high-efficiency flotation method[J]. Multipurpose Utilization of Mineral Resources, 2023, 42(2): 221−224. doi: 10.13301/j.cnki.ct.2023.02.054
[3] 刘旭, 韩华, 申世钰, 等. 动力煤煤泥高剪切调浆浮选提质研究[J]. 矿产综合利用, 2022(3): 158−162+192. doi: 10.3969/j.issn.1000-6532.2022.03.028
LIU X, HAN H, SHEN S Y, et al. Research on fluid inclusions in vein quartz as higher purity quartz sand[J]. Coal Technology, 2022(3): 158−162+192. doi: 10.3969/j.issn.1000-6532.2022.03.028
[4] 陈鹏, 白新伟, 石开仪, 等. 煤泥分级浮选精煤最高产率预测[J]. 矿业研究与开发, 2020, 40(5): 139−143. doi: 10.13827/j.cnki.kyyk.2020.05.023
CHEN P, BAI X W, SHI K Y, et al. Prediction on the maximum yield of clean coal in classified flotation of coal slime[J]. Mining R& D, 2020, 40(5): 139−143. doi: 10.13827/j.cnki.kyyk.2020.05.023
[5] 李世兴, 栗褒, 车道昌, 等. 低阶煤表面润湿性调控对油类捕收剂铺展的影响[J]. 煤炭转化, 2023: 1−16.
LI S X, LI B, CHE D C, et al. Effect of surface wettability control of low rank coal on spreading of oil collector[J]. Coal Conversion, 2023: 1−16.
[6] 徐梦迪, 何琳, 司伟汗, 等. 脂肪酸不饱和度对低阶煤浮选强化的影响机制[J]. 工程科学学报, 2023, 45(2): 195−205.
XU M D, HE L, SI W H, et al. Influence mechanism of fatty acid unsaturation on the intensification of low-rank coal flotation[J]. Chinese Journal of Engineering, 2023, 45(2): 195−205.
[7] 夏阳超, 蘧鹏程, 邢耀文, 等. 基于分子对接技术的难浮煤浮选捕收剂虚拟筛选研究[J]. 煤炭学报, 2023: 1−19.
XIA Y C, QU P C, XING Y W, et al. Molecular docking: Virtual screening technology for collector of difficult-to-float coal[J]. Journal of China Coal Society, 2023: 1−19.
[8] 谢炙轩, 张雷, 郭建英, 等. 阳-阴离子表面活性剂协同非极性油对低阶煤浮选的影响[J]. 煤炭科学技术, 2022, 50(9): 267−275.
XIE Z X, ZHANG L, GUO J Y, et al. Effect of cationic-anionic surfactant synergistic non-polar oil on low-rank coal flotation[J]. Coal Science and Technology, 2022, 50(9): 267−275.
[9] 杨瑞峰. Gemini表面活性剂协同强化低阶煤浮选机理研究[J]. 煤炭工程, 2022, 54(2): 127−132.
YANG R F. Mechanism of Gemini surfactant in synergistic strengthening of low-rank coal flotation[J]. Coal Engineering, 2022, 54(2): 127−132.
[10] 王磊, 李孟乐, 常国慧, 等. 非离子型复配捕收剂强化长焰煤浮选试验研究[J]. 煤炭科学技术, 2022, 50(2): 323−333.
WANG L, LI M L, CHANG G H, et al. Study on mechanism of non-ionic compound collector for enhancing flotation of long flame coal[J]. Coal Science and Technology, 2022, 50(2): 323−333.
[11] WANG R, WANG Z G. Effects of ion solvation on phase equilibrium and interfacial tension of liquid mixtures. J. Chem. Phys., 2011, 135(1): 014707.
[12] LI XS, BOEK E, MAITLAND GC, et al. Interfacial tension of (brines + CO2): (0.864 NaCl+0.136 KCl) at temperatures between (298 and 448) K, pressures between (2 and 50) MPa, and total molalities of (1 to 5) mol·kg−1. J. Chem. Eng. Data. 2012, 57(4): 1078–1088.
[13] 刘宜萍, 赵云良, 陈天星, 等. pH和金属阳离子对煤泥浮选以及动力学的影响研究[J]. 煤炭工程, 2019, 51(11): 143−147.
LIU Y P, ZHAO Y L, CHEN T X, et al. Effect of pH and metal cations on coal slime flotation and the kinetics[J]. Coal Engineering, 2019, 51(11): 143−147.
[14] 田枫, 梁龙, 彭耀丽. 聚合氯化铝对煤泥浮选的影响研究[J]. 煤炭工程, 2019, 51(10): 143−147.
TIAN F, LIANG L, PENG Y L. Effect of polymeric aluminum chloride on coal flotation[J]. Coal Engineering, 2019, 51(10): 143−147.
[15] 陈亮, 陈松降, 陶秀祥, 等. 电解质对低阶煤油泡浮选矿化过程的影响[J]. 煤炭学报, 2018, 43(5): 1432−1439. doi: 10.13225/j.cnki.jccs.2017.1124
CHEN L, CHEN S J, TAO X X, et al. Effects of electrolytes on the mineralization process in oily-bubble flotation of low rank coal[J]. Journal of China Coal Society, 2018, 43(5): 1432−1439. doi: 10.13225/j.cnki.jccs.2017.1124
[16] 马壮, 栗褒, 郭建英, 等. 非离子表面活性剂对氧化煤吸附及浮选行为的影响[J]. 煤炭转化, 2018, 41(3): 38−43. doi: 10.3969/j.issn.1004-4248.2018.03.006
MA Z, LI B, GUO J Y, et al. Effect of nonionic surfactants on adsorption and flotation behavior of oxidized coal[J]. Coal Conversion, 2018, 41(3): 38−43. doi: 10.3969/j.issn.1004-4248.2018.03.006
[17] 刘泽晨, 廖寅飞, 安茂燕, 等. 四氢呋喃酯类捕收剂与低阶煤作用机理的量子化学研究[J]. 中国矿业大学学报, 2018, 47(2): 408−414+428.
LIU Z C, LIAO Y F, AN M Y, et al. Quantum chemistry study of the interaction mechanism between tetrahydrofuran collectors and low rank coal[J]. Journal of China University of Mining & Technology, 2018, 47(2): 408−414+428.
[18] DEMOND A H, LINDNER A S. Estimation of interfacial tension between organic liquids and water[J]. Environ. Sci. Technol, 1993, 27(12): 2318−2331.
[19] 甄坤坤, 茹毅, 张海军. 电解质强化煤泥浮选效果的机制[J]. 煤炭技术, 2017, 36(11): 325−327. doi: 10.13301/j.cnki.ct.2017.11.124
ZHEN K K, RU Y, ZHANG H J. Mechanism of electrolytes for enhancing coal flotation[J]. Coal Technology, 2017, 36(11): 325−327. doi: 10.13301/j.cnki.ct.2017.11.124
[20] 贺萌, 由晓芳, 张伟, 等. 非离子表面活性剂在低阶煤表面的吸附特性及其对润湿性的影响[J]. 中国科技论文, 2017, 12(15): 1704−1710. doi: 10.3969/j.issn.2095-2783.2017.15.005
HE M, YOU X F, ZHANG W, et al. Adsorption characteristic of nonionic surfactant on low-rank coal surface and its influence on wettability[J]. China Science paper, 2017, 12(15): 1704−1710. doi: 10.3969/j.issn.2095-2783.2017.15.005
[21] WEN B, SUN C, BAI B, et al. Ionic hydration-induced evolution of decane–water interfacial tension[J]. Physical Chemistry Chemical Physics, 2017, 19(22): 14606−14614. doi: 10.1039/C7CP01826F
[22] LIU W, LIU W, WANG B, et al. Molecular-level insights into the adsorption of a hydroxy−containing tertiary amine collector on the surface of magnesite ore[J]. Powder Technology, 2019, 355: 700−707. doi: 10.1016/j.powtec.2019.07.098
-