氧化铅锌矿浮选捕收剂研究进展

陈海君, 谢海云, 陈家灵, 晋艳玲, 曾鹏, 宋紫欣, 张群丽, 刘殿文. 氧化铅锌矿浮选捕收剂研究进展[J]. 矿产保护与利用, 2023, 43(5): 42-53. doi: 10.13779/j.cnki.issn1001-0076.2023.05.005
引用本文: 陈海君, 谢海云, 陈家灵, 晋艳玲, 曾鹏, 宋紫欣, 张群丽, 刘殿文. 氧化铅锌矿浮选捕收剂研究进展[J]. 矿产保护与利用, 2023, 43(5): 42-53. doi: 10.13779/j.cnki.issn1001-0076.2023.05.005
CHEN Haijun, XIE Haiyun, CHEN Jialing, JIN Yanling, ZENG Peng, SONG Zixin, ZHANG Qunli, LIU Dianwen. Research Progress of Flotation Collectors for Lead−Zinc Oxide Ore[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 42-53. doi: 10.13779/j.cnki.issn1001-0076.2023.05.005
Citation: CHEN Haijun, XIE Haiyun, CHEN Jialing, JIN Yanling, ZENG Peng, SONG Zixin, ZHANG Qunli, LIU Dianwen. Research Progress of Flotation Collectors for Lead−Zinc Oxide Ore[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 42-53. doi: 10.13779/j.cnki.issn1001-0076.2023.05.005

氧化铅锌矿浮选捕收剂研究进展

  • 基金项目: 国家自然科学基金项目(52064027);云南省重大科技专项(202202AG050015)
详细信息
    作者简介: 陈海君(2000—),男,浙江金华人,硕士研究生,主要从事矿物资源加工研究,E-mail:3266682042@qq.com
    通讯作者: 谢海云(1973—),女,甘肃天水人,博士,教授,主要从事矿物加工和湿法冶金研究,E-mail:xie-haiyun@163.com
  • 中图分类号: TD952.2;TD952.3

Research Progress of Flotation Collectors for Lead−Zinc Oxide Ore

More Information
  • 氧化铅锌矿是我国重要的矿产资源,由于其具有矿物成分复杂、含泥量大、嵌布粒度细等特点,导致分选困难。在介绍氧化铅锌矿表面特性的基础上,阐述了脂肪酸类捕收剂、螯合类捕收剂、两性捕收剂等直接浮选氧化铅锌矿的作用机理及应用,以及硫化—黄药、硫化—胺盐、硫化—黄药—胺盐等硫化浮选氧化铅锌矿的作用机理及应用。最后,指出加强捕收剂作用机理研究,探索捕收剂改性、复配技术,开发高选择性的新型及组合捕收剂是氧化铅锌矿浮选的研究重点。

  • 加载中
  • 图 1  脂肪酸类捕收剂浮选氧化锌矿示意图

    Figure 1. 

    图 2  螯合捕收剂浮选氧化铅锌矿示意图

    Figure 2. 

    图 3  硫化—黄药法浮选氧化铅锌矿示意图

    Figure 3. 

    图 4  硫化—胺盐法浮选氧化锌矿示意图

    Figure 4. 

    表 1  主要氧化铅锌矿的结构及表面特性

    Table 1.  Structure and surface characteristics of main lead−zinc oxide ores

    分类氧化铅矿氧化锌矿
    白铅矿(PbCO3)铅矾(PbSO4菱锌矿(ZnCO3异极矿(Zn4[Si2O7](OH)2H2O)
    晶体结构主要为斜方晶系,每个晶胞
    中含有4个Pb原子、4个C原子和12个O原子
    白色单斜或斜方晶系结晶。每个晶胞由4个Pb原子,1个S原子和4个O原子构成集合体以块状、葡萄状、
    粒状等形式存在,单晶体呈
    菱面体。每个晶胞由8个
    Zn原子,8个C原子和24个
    O原子组成
    以微晶集合体存在,呈板粒状;而单晶体一般呈板状晶型。每个晶胞有着30个O原子,6个Si原子,12个Zn原子和12个H
    原子
    接触角51.85°45°47 °38°~40°
    零电点7.597.6[10]7.4[11]5.39[12]
    伴生脉石白云石、方解石、石英、辉石等
    下载: 导出CSV

    表 2  主要氧化铅锌矿捕收剂结构特征、浮选特性及优缺点

    Table 2.  Structural characteristics, flotation characteristics, advantages and disadvantages of main collectors for lead−zinc oxide ore

    工艺捕收剂种类代表性捕收剂作用机理优缺点
    直接
    浮选
    脂肪酸类油酸(钠)
    CH3(CH2)7CH=CH(CH2)7COOH(Na)
    柠檬酸
    HOOCCH2COH(COOH)CH2COOH
    与矿物表面的Zn2+、Pb2+反应生成
    金属皂
    优点:捕收能力强
    缺点:对温度敏感
    螯合类羟肟酸类R−C(=NOH)−OH
    CF捕收剂R−NOH−NOH
    与Zn2+、Pb2+螯合生成难溶疏水性
    螯合物
    优点:吸附稳定
    缺点:价格高
    两性捕收剂氨基羧酸型NH2RCOOH[13]
    氨基硫酸型NH2RSO3[13]
    氨基磷酸型NH2RH2PO3[13]
    氨基磺酸型NH2ROSO3[13]
    静电吸附
    化学吸附
    优点:抗低温,溶解性好
    缺点:用量大,成本高
    硫化
    浮选
    黄药类(硫
    化—黄药法)
    黄药ROCSSNa(K)
    黑药(RO)2PSSH
    乙硫氮(CH3CH2)2NCSSNa
    在硫化膜表面,双黄药物理吸附;黄药化学吸附,与硫化膜反应生成黄原酸盐优点:成本低,原料来源广泛
    缺点:易分解、选择性差
    胺类(硫
    化—胺法)
    十二胺CH3(CH2)11NH2
    十八胺CH3(CH2)16CH2NH2
    浓度低时发生静电吸附;浓度高时发生半胶束吸附;弱碱性环境形成离子、分子共吸附或形成络合物优点:受水质和温度影响较小、浮选性能好,应用最为广泛。
    缺点:气泡寿命长、选择性差
    下载: 导出CSV

    表 3  硫化浮选和直接浮选的作用形式及优缺点

    Table 3.  Action forms, advantages and disadvantages of sulfide flotation and direct flotation

    浮选类型捕收剂优点缺点作用形式
    直接浮选脂肪酸类捕收剂
    螯合类捕收剂
    两性捕收剂
    胺类捕收剂
    流程简单、对环境污染小对脉石的选择性差、药剂
    用量大、捕收剂价格高、
    无法浮选细粒级矿物
    (1)直接与矿物表面作用,生成螯合物或金属盐,实现疏水。(2)物理吸附在矿物表面,通过疏水基实现疏水
    硫化浮选胺类捕收剂
    黄药类捕收剂
    捕收效果好、捕收剂常见且用量小、成本低、适用
    范围广
    Na2S用量不好控制、
    环境污染大、受泥沙等
    微细粒影响
    硫化剂先与矿物表面生成硫化膜,后捕收剂吸附在硫化膜上,形成金属盐或物理吸附
    下载: 导出CSV
  • [1]

    MASDARIAN M, AZIZI A, BAHRI Z. Mechanochemical sulfidization of a mixed oxide−sulphide copper ore by co−grinding with sulfur and its effect on the flotation efficiency[J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 743−748. doi: 10.1016/j.cjche.2019.10.005

    [2]

    USGS. Mineral Commodity Summaries 2022[R]. 2022.

    [3]

    GROUP I L A Z S. World directory of lead and zinc mines[R]. 2021.

    [4]

    曾茂青, 孙广周, 叶家笋. 新型捕收剂KZ在氧化铅锌矿浮选中的应用[J]. 矿冶, 2014, 23(6): 9−13.

    ZENG M Q, SUN G Z, YE J S. The application of the new collector KZ in oxide lead−zinc flotation[J]. Mining and Metallurgy, 2014, 23(6): 9−13.

    [5]

    刘生长. 富氧侧吹炉处理铅锌氧化原矿工艺的设计研究[J]. 湖南有色金属, 2018, 34(3): 24−26.

    LIU S C. Design of oxygen−enrichen slide−blown smelting process for oxidized lead−zinc deposit[J]. Hu’nan Nonferrous Metals, 2018, 34(3): 24−26.

    [6]

    丰奇成. 白铅矿氯离子强化硫化浮选试验及机理研究[D]. 昆明: 昆明理工大学, 2016.

    FENG Q C. Study on chloride ion enhanced sulfide flotation test and mechanism of cerussite[D]. Kunming: Kunming University of Science and Technology, 2016.

    [7]

    张亚东. 低品位氧化锌矿和硫氧混合锌矿矿相重构与浸出的研究[D]. 昆明: 昆明理工大学, 2016.

    ZHANG Y D. Study on phase reconstruction and leaching of low−grade zinc oxide ore and sulfur−oxygen mixed zinc ore [D]. Kunming: Kunming University of Science and Technology, 2016.

    [8]

    王纪镇, 孙兆辉, 白俊智. 菱锌矿晶体各向异性与表面性质研究[J]. 矿产保护与利用, 2021, 41(2): 1−6.

    WANG J Z, SUN Z H, BAI J Z. Research on crystal anisotropy and surface properties of smithsonite[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 1−6.

    [9]

    邓攀. 某氧硫混合铅锌矿选矿试验研究[J]. 现代矿业, 2022, 38(11): 120−123.

    DENG P. Experimental study on beneficiation of an oxysulfide mixed lead−zinc ore[J]. Modern Mining, 2022, 38(11): 120−123.

    [10]

    张涛. 某冶炼厂锌浸出渣中残余离子对铅矾回收的影响与消除方法研究[D]. 武汉: 武汉科技大学, 2016.

    ZHANG T. A dissertation submitted in partial fulfillment of the requirements for the degree of master in engineering[D]. Wuhan: Wuhan University of Science and Technology, 2016.

    [11]

    李来顺. 硫化—胺法浮选菱锌矿的理论与工艺研究[D]. 长沙: 中南大学, 2013.

    LI L S. Study on theory and process of sulphidizing−amination flotation of smithsonite[D]. Changsha: Central South University, 2013.

    [12]

    韩聪, 魏德洲, 沈岩柏, 等. 十二胺体系中异极矿和菱锌矿的浮选行为[J]. 东北大学学报(自然科学版), 2016, 37(11): 1582−1587.

    HAN C, WEI D Z, SHEN Y B, et al. Flotation behavior of hemimorphite and smithsonite in dodecylamine system[J]. Journal of Northeastern University (Natural Science Edition), 2016, 37(11): 1582−1587.

    [13]

    杨婕. 两性捕收剂的合成及其浮选性能研究[D]. 武汉: 武汉工程大学, 2016.

    YANG J. The synthesis and flotation performance of amphoteric collector[D]. Wuhan: Wuhan Institute of Technology, 2016.

    [14]

    韦迪, 李智力, 李进, 等. 氧化矿常温浮选脂肪酸类捕收剂的研究现状[J]. 有色金属(选矿部分), 2023, 23(2): 161−172.

    WEI D, LI Z L, LI J, et al. Research status of fatty acid collectors for flotation of oxidation ore at ambient temperature[J]. Nonferrous Metals (Mineral Processing Section), 2023, 23(2): 161−172.

    [15]

    COOK B K, GIBSON C E. A review of fatty acid collectors: implications for spodumene flotation[J]. Minerals, 2023, 13(2): 212−213. doi: 10.3390/min13020212

    [16]

    郭姚. 新型分散剂强化含泥菱锌矿浮选行为的研究[D]. 赣州: 江西理工大学, 2022.

    GUO Y. Study on flotation behavior of slime−bearing smithsonite enhanced by new dispersant [D]. Ganzhou: Jiangxi University of Science and Technology, 2022.

    [17]

    CAO Q B, ZHOU H, LIU D W, et al. Flotation separation of smithsonite from calcite using an amino−acid collector[J]. Separation and Purification Technology, 2022,281: 119980−119989.

    [18]

    SUN W H, LIU W G, DUAN S J, et al. Inserting EO groups to improve the performance of fatty acid collectors: flotation and adsorption study performed with calcite, dolomite, and quartz[J]. Separation and Purification Technology, 2021, 272: 118952−118960.

    [19]

    孙伟, 王若林, 胡岳华, 等. 矿物浮选过程中铅离子的活化作用及新理论[J]. 有色金属(选矿部分), 2018(2): 91−98.

    SUN W, WANG R L, HU Y H, et al. Activation and new theory of lead ion in minerals flotation process[J]. Nonferrous Metals (mineral processing part), 2018(2): 91−98.

    [20]

    ZHAO L, LIU W G, LIU W B, et al. Investigation on matching relationship between surface characters and collector properties: Achieving flotation separation of zinc oxide minerals from quartz[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617: 126392−126400. doi: 10.1016/j.colsurfa.2021.126392

    [21]

    叶军建, 张覃, 姜毛, 等. 组合捕收剂浮选氧化锌矿试验研究[J]. 有色金属(选矿部分), 2014(6): 46−50.

    YE J J, ZHANG Q, JIANG M, et al. Flotation study on zinc oxide ore by using combined collector[J]. Nonferrous Metals(mineral processing part), 2014(6): 46−50.

    [22]

    NAZYM S, RUDOLF B, SERGEY M, et al. Optimization of conditions for processing of lead–zinc ores enrichment tailings of east kazakhstan[J]. Metals, 2021, 11(11): 802−803.

    [23]

    庞杰. 典型氧化铅锌矿物水热硫化−浮选基础理论研究[D]. 昆明: 昆明理工大学, 2020.

    PANG J. Study on the basic theory of hydrothermal sulfidation−flotation of typical lead−zinc oxide minerals[D]. Kunming: Kunming University of Science and Technology, 2020.

    [24]

    曾宇辉. 苯丙烯基羟肟酸对氧化铅锌矿的浮选特性及机理研究[D]. 赣州: 江西理工大学, 2022.

    ZENG Y H. Study on flotation characteristics and mechanism of phenylallyl hydroxamic acid on lead−zinc oxide ore[D]. Ganzhou: Jiangxi University of Science and Technology, 2022.

    [25]

    刘炅. 难选氧化锌矿石全粒级浮选新药剂研究[D]. 南宁: 广西大学, 2019.

    LIU J. Study on new reagents for full−size flotation of refractory zinc oxide ore[D]. Nanning: Guangxi University, 2019.

    [26]

    王祖旭. 用新型螯合捕收剂分选云南某氧化铅锌矿石[J]. 金属矿山, 2014(7): 89−93.

    WANG Z X. Application of a new chelating−agent collector on benficiation of a lead−zinc oxide ore in Yunnan[J]. Metal Mine, 2014(7): 89−93.

    [27]

    朱玉霜, 赵景云, 朱建光. RO−X系列捕收剂浮选氧化铅锌矿试验[J]. 湖南有色金属, 1991(2): 84−90.

    ZHU Y S, ZHAO J Y, ZHU J G. RO−X series collectors flotation of lead−zinc oxide ores[J]. Hu’nan Nonferrous Metals, 1991(2): 84−90.

    [28]

    LIU W G, Zhao L, Liu W B, et al. Synthesis and utilization of a gemini surfactant as a collector for the flotation of hemimorphite from quartz[J]. Minerals Engineering, 2019, 134: 394−401.

    [29]

    ZHAO L, LIU W G, Duan H, et al. Sodium carbonate effects on the flotation separation of smithsonite from quartz using N, N′−dilauroyl ethylenediamine dipropionate as a collector[J]. Minerals Engineering, 2018, 126: 1−8.

    [30]

    蔡锦鹏, 宋凯伟, 申培伦, 等. 滇东某多金属氧化铅锌矿高效回收选矿工艺[J]. 过程工程学报, 2018, 18(3): 612−617.

    CAI J P, SONG K W, SHEN P L et al. High efficient recovery of oxidized lead−zinc minerals from a multi−metal ore in the eastern region of Yunnan province[J]. Process Engineering, 2018, 18(3): 612−617.

    [31]

    巩明辉, 李国栋, 王婷霞. 某高氧化率铅锌矿选矿试验研究[J]. 金属矿山, 2022(5): 117−122.

    GONG M H, LI G D, WANG T X. Experimental study on beneficiation of a lead−zinc ore with high oxidation rate[J]. Metal Mine, 2022(5): 117−122.

    [32]

    ZHANG M, HUANG L Y, SUN X, et al. A new perspective on copper oxide flotation: Synthesis and mechanism study of a surfactant for sulfide−free flotation[J]. Inorganic Chemistry Communications, 2023, 155: 110990−110999. doi: 10.1016/j.inoche.2023.110990

    [33]

    QI Z, YANG J, SHI Y, et al. Activating hemimorphite using a sulfidation−flotation process with sodium sulfosalicylate as the complexing agent[J]. Journal of Materials Research and Technology, 2020, 9(5): 10110−10120. doi: 10.1016/j.jmrt.2020.07.005

    [34]

    LIU R Z, LIU D W, LI J L, et al. Improved understanding of the sulfidization mechanism in cerussite flotation: An XPS, TOF−SIMS and FESEM investigation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 595: 124508−124515. doi: 10.1016/j.colsurfa.2020.124508

    [35]

    刘思言. 白铅矿硫化浮选硫化膜表面形貌及晶相结构初探[D]. 昆明: 昆明理工大学, 2020.

    LIU S Y. Preliminary study on the surface morphology and crystal structure of sulfide film in sulfidation flotation of cerussite[D]. Kunming: Kunming University of Science and Technology, 2020.

    [36]

    XUE J W, QU Y B, CHEN Y, et al. Effective sulfide flotation of cerussite by using trithiocyanuric acid as a novel sulfurizing reagent[J]. Minerals Engineering, 2023, 198: 108087−108093.

    [37]

    朱国庆, 郭顺磊, 常慕远. 某难选氧化铅锌矿选矿试验研究[J]. 矿冶工程, 2014, 34(z1): 163−165.

    ZHU G Q, GUO S L, CHAN M Y. Experimental study on beneficiation of a refractory lead−zinc oxide ore[J]. Mining and Metallurgical Engineering, 2014, 34(z1): 163−165.

    [38]

    毛益林, 陈晓青, 杨进忠, 等. 某复杂难选氧化铅锌矿选矿试验研究[J]. 矿产综合利用, 2011(1): 6−10.

    MAO Y L, CHEN X Q, YANG J Z, et al. Experimental research on mineral processing technology for separating a complex and refractory oxide lead—zinc ore[J]. Comprehensive Utilization of Minerals, 2011(1): 6−10.

    [39]

    LIU C, ZHANG W, SONG S, et al. A novel insight of the effect of sodium chloride on the sulfidization flotation of cerussite[J]. Powder Technology, 2019, 344: 103−107. doi: 10.1016/j.powtec.2018.12.002

    [40]

    曾鹏, 谢海云, 晋艳玲, 等. 典型铜铅锌氧化矿的强化硫化浮选研究进展[J]. 矿冶, 2022, 31(2): 22−28.

    ZENG P, XIE H Y, JIN Y L, et al. Research progress of enhanced sulfide flotation for typical copper−lead−zinc oxide ores[J]. Mining & Metallurgy, 2022, 31(2): 22−28.

    [41]

    沈同喜. 氧化铅矿硫化浮选强化技术研究[D]. 赣州: 江西理工大学, 2013.

    SHEN T X. Study on sulfide flotation strengthening technology of lead oxide ore [D]. Ganzhou: Jiangxi University of Science and Technology, 2013.

    [42]

    DENG R D, WANG Y, DUAN W T, et al. Induced crystallization of Pb2+ on smithsonite surface during sulfidation−xanthate flotation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650: 129576−129585.

    [43]

    毛志丹, 谢克强, 孔德全, 等. 云南某复杂硫、氧混合铅锌矿浮选实验研究[J]. 矿冶工程, 2021, 41(6): 34−37.

    MAO Z D, XIE K Q, KONG D Q, et al. Flotation of mixed sulfide−oxide lead and zinc ore from Yunnan[J]. Mining and Metallurgical Engineering, 2021, 41(6): 34−37.

    [44]

    李文雅. 郴州某铅锌矿的浮选分离试验研究[J]. 科技风, 2017(11): 130−131.

    LI W T. Experimental study on flotation separation of a lead−zinc mine in Chenzhou[J]. Technology Wind, 2017(11): 130−131.

    [45]

    朱亚光, 张周位, 黄苑龄. 贵州织金某铅锌矿石浮选试验[J]. 现代矿业, 2018, 34(4): 109−111+114.

    ZHU Y G, ZHANG Z W, HUANG W L. Flotation test of a lead−zinc ore in Zhijin, Guizhou[J]. Modern Mining, 2018, 34(4): 109−111+114.

    [46]

    WANG M T, ZHANG G F, CHEN Y F, et al. Effect of surface oxidization on quartz slime coating in the sulfidization−amine flotation of smithsonite[J]. Minerals Engineering, 2022, 188: 107847−107854. doi: 10.1016/j.mineng.2022.107847

    [47]

    许大洪, 陈晔. 高硅型异极矿硫化—胺类捕收剂浮选机理研究[J]. 矿产保护与利用, 2022, 42(1): 28−33.

    XU D H, CHEN Y. Study on sulfide−amine flotation mechanism of hemimorphite with high content of silicon[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 28−33.

    [48]

    方浩. 十八胺作用下Pb 2+强化异极矿浮选试验及机理研究[D]. 赣州: 江西理工大学, 2018.

    FANG H. The Pb2+ enhance flotation of hemimorphite while octadecylamine as collector and its mechanism[D]. Ganzhou: Jiangxi University of Science and Technology, 2018.

    [49]

    李来顺. 硫化—胺法浮选菱锌矿的理论与工艺研究[D]. 长沙: 中南大学, 2013.

    LI L S. Theoretical and technological study on flotation of smithsonite by sulfidation−amine method [D]. Changsha: Central South University, 2013.

    [50]

    靳晨曦, 马子龙, 曹亦俊, 等. 极低品位泥质难选氧化锌矿浮选试验研究[J]. 矿产综合利用, 2017(1): 70−75.

    JIN C X, MA Z L, CAO Y J, et al. Flotation study on separating the extremely low−grade and argillaceous refractory oxide zinc[J]. Comprehensive Utilization of Minerals, 2017(1): 70−75.

    [51]

    谢丹丹. 四川会理难选氧化铅锌矿选矿试验研究[D]. 昆明: 昆明理工大学, 2018.

    XIE D D. Experimental study on beneficiation of refractory lead−zinc oxide ore in Huili, Sichuan[D]. Kunming: Kunming University of Science and Technology, 2018.

    [52]

    陈晔, 陈建华, 覃华. 胺类捕收剂对异极矿等4种矿物浮选行为的影响[J]. 矿业研究与开发, 2008(1): 32−34.

    CHEN Y, CHEN J H, QIN H. Effect of amine collectors on flotation behavior of four minerals such as hemimorphite[J]. Mining Research and Development, 2008(1): 32−34.

    [53]

    张万忠. 白铅矿和菱锌矿的辅助捕收剂研究[D]. 沈阳: 东北大学, 2018.

    Zhang W Z. Investigation on auxiliary collectors of cerussite and smithsonite[D]. Shenyang: Northeast University, 2018.

    [54]

    余江鸿, 周涛, 刘守信. 四川甘洛县某氧化铅锌矿石选矿试验研究[J]. 金属矿山, 2009(12): 77−79+98.

    YU J H, ZHOU T, LIU S X. Experimental study on beneficiation of a lead−zinc oxide ore in Ganluo County, Sichuan Province[J]. Metal Mine, 2009(12): 77−79+98.

    [55]

    王美丽. 铅离子在菱锌矿表面的吸附特性及其对硫化浮选的影响机制[D]. 昆明: 昆明理工大学, 2022.

    WANG M L, Adsorption characteristics of lead ions on the surface of smithsonite and its influence mechanism on sulfide flotation[D]. Kunming: Kunming University of Science and Technology, 2022.

    [56]

    XING D Q, HUANG Y Q, LIN C S, et al. Strengthening of sulfidization flotation of hemimorphite via fluorine ion modification[J]. Separation and Purification Technology, 2021, 269: 118769−118778. doi: 10.1016/j.seppur.2021.118769

    [57]

    HAN J H, LI X A, DAI S J, et al. The flotation separation of magnesite and limonite using an amine collector[J]. Adsorption Science & Techmology, 2021, 2021(5534274): 1−12.

    [58]

    宋凯伟. 氧硫混合锌矿氨铵溶蚀−活化浮选机理与工艺[D]. 昆明: 昆明理工大学, 2021.

    SONG K W. Mechanism and process of ammonium ammonia dissolution−activation flotation for mixed zinc oxide−sulfur ore[D]. Kunming: Kunming University of Science and Technology, 2021.

    [59]

    冉金城, 刘全军, 张治国, 等. 腾冲高泥氧化锌矿选矿实验研究[J]. 过程工程学报, 2015, 15(4): 559−566.

    RAN J C, LIU Q J, ZHAO Z G, et al. Research on concentration of zinc oxide ore with high content slime from Tengchong[J]. Journal of Process Engineering, 2015, 15(4): 559−566.

    [60]

    陈锦全, 周德炎, 魏宗武, 等. 高铁泥化氧化铅锌矿的浮选试验研究[J]. 矿业研究与开发, 2007(5): 50−51+93.

    CHEN J Q, ZHOU D Y, WEI Z W, et al. Experimental study on flotation of high iron mud lead−zinc oxide ore[J]. Mining Research and Development, 2007(5): 50−51+93.

    [61]

    李红侠, 卫亚儒. 某微细嵌布氧化铅锌矿选矿工艺研究[J]. 中国矿山工程, 2017, 46(2): 27−30.

    LI H X, WEI Y R. Study on mineral separation technology of a fine dissemination lead−zinc oxide ore[J]. China Mine Engineering, 2017, 46(2): 27−30.

    [62]

    孙广周, 王德英, 罗兴, 等. 新型组合捕收剂浮选氧化铅矿试验研究[J]. 矿产保护与利用, 2012, 26(1): 26−29.

    SUN G Z, WANG D Y, LUO X, et al. The research on flotation of a lead oxide ore using new combined collectors[J]. Conservation and Utilization of Mineral Resources, 2012, 26(1): 26−29.

    [63]

    MONTE M B, PIMETEL D A, ALBUQUERQUE M D, et al. Synergism of mixed cationic collectors in the flotation of quartz unveiled by AFM, solution chemistry and quantum chemical calculations[J]. Journal of Molecular Liquids, 2023, 376: 121397−121409.

    [64]

    GAO Z Y, DING B, SUN W, et al. Selective flotation of scheelite from calcite and fluorite using a collector mixture[J]. Minerals Engineering, 2015, 72: 23−26. doi: 10.1016/j.mineng.2014.12.025

    [65]

    JIN J X, GAO H M, CHEN X M, et al. The flotation of aluminosilicate polymorphic minerals with anionic and cationic collectors[J]. Minerals Engineering, 2016, 99: 123−132. doi: 10.1016/j.mineng.2016.08.005

    [66]

    曹世明. 硅质氧化锌矿活化浮选机理研究[D]. 昆明: 昆明理工大学, 2014.

    CAO S M. Study on activation flotation mechanism of siliceous zinc oxide ore[D]. Kunming: Kunming University of Science and Technology, 2014.

    [67]

    陈园园, 文金磊. 高泥高氧化率氧化铅锌矿浮选工艺研究[J]. 湖南有色金属, 2022, 38(6): 13−16+72.

    CHEN Y Y, WEN J L. Study on flotation process of oxidized lead−zinc ore with high mud and high oxidation rate[J]. Hunan Nonferrous Metals, 2022, 38(6): 13−16 + 72.

  • 加载中

(4)

(3)

计量
  • 文章访问数:  379
  • PDF下载数:  26
  • 施引文献:  0
出版历程
收稿日期:  2023-06-16
录用日期:  2023-06-16
刊出日期:  2023-10-25

目录