Dry High−intensity Magnetic Separator of Fine Hematite Enhanced by Aerodynamic Field
-
摘要:
针对当前弱磁性矿物干式磁选存在微细颗粒间黏附、团聚现象严重、分离选择性差的缺点,研制了一种新型空气动力场强磁选机。以TFe品位为17.5%的赤铁矿−石英混合矿为研究对象,探究了空气动力场强磁选机对不同粒级赤铁矿分选的影响。试验结果表明,该新型磁选机显著强化了颗粒间的分散,大幅度提高了微细颗粒干式磁选的选择性。对于−0.038+0.015 mm粒级赤铁矿,与常规设备相比,在回收率相近的情况下精矿品位提高了20百分点;同时有效消除了−0.038+0.015 mm粒级石英在−0.15+0.074 mm赤铁矿表面的黏附现象,避免了细粒石英因黏附在赤铁矿表面而进入到精矿中,降低精矿品位。颗粒受力计算表明,空气动力场可以克服微细粒颗粒间相互作用力,改善磁选过程的选择性,但是同时需要耦合高磁场感应强度和磁场梯度,才能进一步提高精矿回收率。
Abstract:A novel pneumatic magnetic separator was developed to address the adhesion and aggregation of fine weakly magnetic materials and improve the captured selectivity in dry conditions. A mixture sample of hematite and quartz with a TFe content of 17.5% was used as the feed to investigate the separation performance of the novel magnetic separator for the mixture with different particle sizes. The experimental results showed that the novel magnetic separator significantly strengthened the dispersion between particles and greatly improved the selectivity of dry magnetic separation of fine particles. For the −0.038+0.015 mm hematite particles, the TFe grade increased by 20% compared with the conventional system under similar recovery. In addition, the aerodynamic field can eliminate the adhesion of −0.038+0.015 mm quartz particles to the surface of the −0.15+0.074 mm hematite particles, thus preventing fine quartz particles from entering the concentrate and reducing its grade. Finally, force analysis showed that the aerodynamic field can overcome the interparticle interaction and improve selective separation, but a high gradient magnetic field was required to enhance the recovery of magnetic particles.
-
Key words:
- dry separation /
- high−intensity magnetic separator /
- aerodynamic field /
- hematite /
- quartz
-
-
-
[1] 许金越, 王伊琳, 宋少先. 干式振动高梯度磁选机的分选机理与试验研究[J]. 金属矿山, 2023(2): 189−195. doi: 10.19614/j.cnki.jsks.202302026
XU J Y, WANG Y L, SONG S X. Separation mechanism and experimental study of dry vibration high gradient magnetic separator[J]. Metal Mine, 2023(2): 189−195. doi: 10.19614/j.cnki.jsks.202302026
[2] 冯永馨, 陈雷超. 中国西部地区铁矿资源状况及其主要特点[J]. 低碳世界, 2016(23): 84−85. doi: 10.16844/j.cnki.cn10-1007/tk.2016.23.051
FENG Y X, CHEN L C. Status and main characteristics of iron ore resources in western China[J]. Low Carbon World, 2016(23): 84−85. doi: 10.16844/j.cnki.cn10-1007/tk.2016.23.051
[3] BAAWUAH E, KELSEY C, ADDAI−MENSAH J, et al. Assessing the performance of a novel pneumatic magnetic separator for the beneficiation of magnetite ore[J]. Minerals Engineering, 2020, 156: 106483. doi: 10.1016/j.mineng.2020.106483
[4] 谢顺平, 胡志成, 卢东方, 等. 气流型干式磁选机在细粒磁铁矿中的应用及机理分析[J]. 有色金属工程, 2022, 12(9): 79−91. doi: 10.3969/j.issn.2095-1744.2022.09.012
XIE S P, HU Z C, LU D F, et al. Application and mechanism on analysis of air−flow dry magnetic separator fine magnetite ore[J]. Nonferrous Metals Engineering, 2022, 12(9): 79−91. doi: 10.3969/j.issn.2095-1744.2022.09.012
[5] 曹丽英, 靳少康, 张逸. 新型干式永磁筒式磁选机风力因素分析[J]. 有色金属(选矿部分), 2021(4): 104−110.
CAO L Y, JIN S K, ZHANG Y. Wind factor analysis of new type dry permanent magnet drum magnetic separator[J]. Nonferrous Metals (Minerals processing section), 2021(4): 104−110.
[6] 王顺, 辛青. 新型粉矿风力干式磁选机的研制与应用研究[J]. 现代矿业, 2019, 35(4): 133−135. doi: 10.3969/j.issn.1674-6082.2019.04.036
WANG S, XIN Q. Development and application research of a new type of dry magnetic separator for pulverized ore[J]. Modern Mining, 2019, 35(4): 133−135. doi: 10.3969/j.issn.1674-6082.2019.04.036
[7] SONG S L, ZHANG G L, LUO Z F, et al. Development of a fluidized dry magnetic separator and its separation performance tests[J]. Mineral Processing and Extractive Metallurgy Review, 2019, 40: 307−313. doi: 10.1080/08827508.2019.1635469
[8] LU D F, LIU J J, CHENG Z Y, et al. Development of an open−gradient magnetic separator in the aerodynamic field[J]. Physicochemical Problems of Mineral Processing, 2020, 56: 325−337.
[9] XU J Y, CHEN J, REN X J, et al. A novel dry vibrating HGMS separator for purification of potash feldspar ore[J]. Separation Science and Technology, 2022, 57(3): 484−491. doi: 10.1080/01496395.2021.1900250
[10] 刘向民, 陈剑. 新型SLon−1000干式振动高梯度磁选机研制[J]. 非金属矿, 2006(6): 32−34. doi: 10.3969/j.issn.1000-8098.2006.06.012
LIU X M, CHEN J. Development of new type SLon−1000 dry vibration high gradient magnetic separator[J]. Non−Metallic Mines, 2006(6): 32−34. doi: 10.3969/j.issn.1000-8098.2006.06.012
[11] 刘剑军, 卢东方, 王毓华, 等. 风力作用下的干式磁选机对磁铁矿预选的影响[J]. 中国有色金属学报, 2020, 30(10): 2482−2491.
LIU J J, LU D F, WANG Y H, et al. Effect of dry magnetic separator on pre−selection of magnetite under wind power[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(10): 2482−2491.
[12] 袁志涛, 王常任. 磁电选矿: 第2版[M]. 北京: 冶金工业出版社, 2015: 12−23.
YUAN Z T, WANG C R. Magnetoelectric mineral processing: 2nd ed[M]. Beijing: Metallurgical Industry Press, 2015: 12−23.
[13] LIU Y. A. Studies in magnetochemical engineering: Part Ⅳ. A fluidized−bed superconducting magnetic separation process for dry coal desulfurization[J]. Powder Technology, 1988, 56: 259−277. doi: 10.1016/0032-5910(88)80010-X
[14] NAKAI Y, SENKAWA K, MISHIMA F, et al. Study on interparticle interaction for dry HGMS system using pneumatic conveyance[J]. Physica C: Superconductivity and its Applications, 2011, 471(21): 1533−1537.
-